Header

UZH-Logo

Maintenance Infos

Reduced soil respiration in gaps in logged lowland dipterocarp forests


Saner, P; Lim, R; Burla, B; Scherer-Lorenzen, M; Hector, A (2009). Reduced soil respiration in gaps in logged lowland dipterocarp forests. Forest Ecology and Management, 258:2007-2012.

Abstract

We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m-2 h-1) but were double those in gap sites
(640 ± 130 mg CO2 m-2 h-1). Post hoc analyses found that an increase in soil temperature and a decrease in litterfall and fine root biomass explained 72% of the difference between gap and non-gap sites. The significant decrease of soil respiration rates in gaps, irrespective of day or night time, suggests that autotrophic respiration may be an important contributor to total soil respiration in logged forests. We conclude that biosphere-atmosphere carbon exchange models in tropical systems should incorporate gap
frequency and that future research in tropical forest should emphasize the contribution of autotrophic respiration to total soil respiration.

Abstract

We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m-2 h-1) but were double those in gap sites
(640 ± 130 mg CO2 m-2 h-1). Post hoc analyses found that an increase in soil temperature and a decrease in litterfall and fine root biomass explained 72% of the difference between gap and non-gap sites. The significant decrease of soil respiration rates in gaps, irrespective of day or night time, suggests that autotrophic respiration may be an important contributor to total soil respiration in logged forests. We conclude that biosphere-atmosphere carbon exchange models in tropical systems should incorporate gap
frequency and that future research in tropical forest should emphasize the contribution of autotrophic respiration to total soil respiration.

Statistics

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

366 downloads since deposited on 07 Oct 2009
36 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Tropics, Borneo, Logged forest, Carbon cycle, Gap dynamics, Soil ecology
Language:English
Date:2009
Deposited On:07 Oct 2009 09:40
Last Modified:05 Apr 2016 13:21
Publisher:Elsevier
ISSN:0378-1127
Publisher DOI:https://doi.org/10.1016/j.foreco.2009.07.048

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations