Header

UZH-Logo

Maintenance Infos

Existence results for monotone perturbations of the Dirichlet problem.


Chipot, M; Kis, L (2000). Existence results for monotone perturbations of the Dirichlet problem. Advances in Mathematical Sciences and Applications, 10(1):81-101.

Abstract

Let Ω⊂ℝ n , n≥1, be a bounded domain and A an elliptic operator given by Au=∑ i,j=1 n ∂ ∂x i (a ij (x)∂u ∂x j ), with a ij ∈L ∞ (Ω), 1≤i, j≤n, a ij (x)ξ i ξ j ≥d|ξ| 2 , ξ∈ℝ n , a.e. x∈Ω. For f∈L p (Ω) the authors study existence results for problems of the form: -Au+β(x,u)∋f in Ω, u=0 on ∂Ω, where β(x,·) a maximal monotone graph. This extends a well-known theory of H. Brezis (see [Problèmes unilatéraux, J. Math. Pure Appl. 51, 1-162 (1972); Noveaux théorèmes de regularité pur les problèmes unilatéraux, Recontres entre physiciens théoriciens et mathématiciens 12 (1971), Strasbourg]) to the case where β depends on x.

Abstract

Let Ω⊂ℝ n , n≥1, be a bounded domain and A an elliptic operator given by Au=∑ i,j=1 n ∂ ∂x i (a ij (x)∂u ∂x j ), with a ij ∈L ∞ (Ω), 1≤i, j≤n, a ij (x)ξ i ξ j ≥d|ξ| 2 , ξ∈ℝ n , a.e. x∈Ω. For f∈L p (Ω) the authors study existence results for problems of the form: -Au+β(x,u)∋f in Ω, u=0 on ∂Ω, where β(x,·) a maximal monotone graph. This extends a well-known theory of H. Brezis (see [Problèmes unilatéraux, J. Math. Pure Appl. 51, 1-162 (1972); Noveaux théorèmes de regularité pur les problèmes unilatéraux, Recontres entre physiciens théoriciens et mathématiciens 12 (1971), Strasbourg]) to the case where β depends on x.

Statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:uniqueness; Yosida approximation; estimates; variational inequality; maximal monotone graph
Language:English
Date:2000
Deposited On:12 Jul 2010 12:46
Last Modified:05 Apr 2016 13:25
Publisher:Gakko Tosho
ISSN:1343-4373
Official URL:http://www1.gifu-u.ac.jp/~aiki/AMSA/vol10.html
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1769179

Download

Full text not available from this repository.