Header

UZH-Logo

Maintenance Infos

On the efficient computation of singular and nearly singular surface integrals arising in 3D-Galerkin BEM


Sauter, S (1996). On the efficient computation of singular and nearly singular surface integrals arising in 3D-Galerkin BEM. ZAMM - Journal of Applied Mathematics and Mechanics, 76(Suppl. 2):273-275.

Abstract

We present efficient techniques to approximate singular and nearly singular surface integrals arising massively in Galerkin boundary element discretizations of Fredholm integral equations on two-dimensional surfaces. The technique is based on a new representation of the functionals which arise by computing the so-called local element matrices, i.e., integrals over pairs of panels. The remaining integrals are approximated by introducing relative co-ordinates which fix the location of the singularity. These integrals can be integrated using polar co-ordinates. It turns out that the number of kernel evaluations which is needed to compute the integrals up to the required accuracy is independent of the order of the singularity. This enables us to use the hypersingular formulation of integral equations which is the method of choice from the theoretical point of view, i.e., stability, robustness with respect to non-smooth surfaces, etc.

Abstract

We present efficient techniques to approximate singular and nearly singular surface integrals arising massively in Galerkin boundary element discretizations of Fredholm integral equations on two-dimensional surfaces. The technique is based on a new representation of the functionals which arise by computing the so-called local element matrices, i.e., integrals over pairs of panels. The remaining integrals are approximated by introducing relative co-ordinates which fix the location of the singularity. These integrals can be integrated using polar co-ordinates. It turns out that the number of kernel evaluations which is needed to compute the integrals up to the required accuracy is independent of the order of the singularity. This enables us to use the hypersingular formulation of integral equations which is the method of choice from the theoretical point of view, i.e., stability, robustness with respect to non-smooth surfaces, etc.

Statistics

Citations

5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Additional indexing

Other titles:3rd International Congress on Industrial and Applied Mathematics / Annual Conference of the Gesellschaft-fur-Angewandte-Mathematik-und-Mechanik e V (ICIAM/GAMM 95) - Applied Analysis, HAMBURG, GERMANY, JUL 03-07, 1995
Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:Numerical method ; Boundary element method ; Discretization method ; Galerkin method ; Singularity ; Integral equation ; Fredholm equation ; Two dimensional system
Language:English
Date:1996
Deposited On:29 Nov 2010 16:28
Last Modified:06 Dec 2017 21:05
Publisher:Wiley-Blackwell
ISSN:0044-2267

Download

Full text not available from this repository.