Header

UZH-Logo

Maintenance Infos

Eigenvalue inequalities and Schubert calculus


Helmke, U; Rosenthal, J (1995). Eigenvalue inequalities and Schubert calculus. Mathematische Nachrichten, 171:207-225.

Abstract

Using techniques from algebraic topology we derive linear inequalities which relate the spectrum of a set of Hermitian matrices A1 , . . . , Ar ∈ C n×n with the spectrum of the sum A1 + · · · + Ar . These extend eigenvalue inequalities due to Freede-Thompson and Horn for sums of eigenvalues of two Hermitian matrices.

Abstract

Using techniques from algebraic topology we derive linear inequalities which relate the spectrum of a set of Hermitian matrices A1 , . . . , Ar ∈ C n×n with the spectrum of the sum A1 + · · · + Ar . These extend eigenvalue inequalities due to Freede-Thompson and Horn for sums of eigenvalues of two Hermitian matrices.

Statistics

Citations

21 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:1995
Deposited On:19 Mar 2010 07:36
Last Modified:06 Dec 2017 21:06
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0025-584X
Publisher DOI:https://doi.org/10.1002/mana.19951710113
Related URLs:http://www.math.uzh.ch/fileadmin/user/rosen/publikation/he95.pdf (Author)

Download

Full text not available from this repository.
View at publisher