Header

UZH-Logo

Maintenance Infos

Retinal defects in the zebrafish bleached mutant.


Neuhauss, S C F; Seeliger, M W; Schepp, C P; Biehlmaier, O (2003). Retinal defects in the zebrafish bleached mutant. Documenta Ophthalmologica, 107(1):71-78.

Abstract

The recessive zebrafish mutant bleached has, apart from its defects in pigmentation, a heritable defect leading to larval blindness. Here, we analyze the retina of homozygous bleached larvae, employing morphological and electrophysiological methods. Electroretinography revealed a complete lack of electrical signals in response to light. Histological analysis of mutant retinae showed a severely affected outer retina with a hypopigmented pigment epithelium and a disorganized outer nuclear layer containing few or no intact photoreceptors. Using the TUNEL assay for cell death detection, we noticed a strong increase of apoptotic cells in all retinal cell layers, starting in young larvae even before retinal support of visual function. At later stages cell death is most pronounced at the marginal zone, where new cells are constantly added to the retina. At early stages increased apoptosis is mainly confined to the retina, while at later stages elevated cell death is al so apparent in extra-retinal tissues, particularly in the brain. Hence, the lack of visual responses in homozygous bleached larvae can be attributed to a severe defect of the outer retina, preceded by increased levels of apoptotic cell death in all retinal cell layers.

Abstract

The recessive zebrafish mutant bleached has, apart from its defects in pigmentation, a heritable defect leading to larval blindness. Here, we analyze the retina of homozygous bleached larvae, employing morphological and electrophysiological methods. Electroretinography revealed a complete lack of electrical signals in response to light. Histological analysis of mutant retinae showed a severely affected outer retina with a hypopigmented pigment epithelium and a disorganized outer nuclear layer containing few or no intact photoreceptors. Using the TUNEL assay for cell death detection, we noticed a strong increase of apoptotic cells in all retinal cell layers, starting in young larvae even before retinal support of visual function. At later stages cell death is most pronounced at the marginal zone, where new cells are constantly added to the retina. At early stages increased apoptosis is mainly confined to the retina, while at later stages elevated cell death is al so apparent in extra-retinal tissues, particularly in the brain. Hence, the lack of visual responses in homozygous bleached larvae can be attributed to a severe defect of the outer retina, preceded by increased levels of apoptotic cell death in all retinal cell layers.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
9 citations in Scopus®
9 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 July 2003
Deposited On:11 Feb 2008 12:13
Last Modified:19 Feb 2018 21:03
Publisher:Springer
ISSN:0012-4486
OA Status:Closed
Publisher DOI:https://doi.org/10.1023/A:1024492029629
PubMed ID:12906124

Download

Full text not available from this repository.
View at publisher

Get full-text in a library