Header

UZH-Logo

Maintenance Infos

Sur la régularité de la solution d‘inéquations variationnelles elliptiques


Chipot, M (1979). Sur la régularité de la solution d‘inéquations variationnelles elliptiques. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Séries A et B, 288(10):A543-A546.

Abstract

Let $\Omega$ be a smooth bounded open set of ${\bf R}^n,A$ a uniformly elliptic second-order operator and $f$ a function belonging to $W^{1,p}(\Omega)\ (p>n)$. For $\varphi,\psi\in H_0^1(\Omega)\cap W^{2,\infty}(\Omega)$, $\varphi\leq\psi$, we prove that any solution $u$ of the problem $(-Au,v-u)\geq(f,v-u)$ for all $v\in K$, $u\in K=${$v\in H_0^1(\Omega)\colon\varphi\leq v\leq\psi$ a.e. in $\Omega$}, belongs to $W^{2,\infty}(\Omega)$. This generalizes the results of H. Brézis and D. Kinderlehrer [Indiana Univ. Math. J. 23 (1973/74), 831--844] in the case of two barriers.

Abstract

Let $\Omega$ be a smooth bounded open set of ${\bf R}^n,A$ a uniformly elliptic second-order operator and $f$ a function belonging to $W^{1,p}(\Omega)\ (p>n)$. For $\varphi,\psi\in H_0^1(\Omega)\cap W^{2,\infty}(\Omega)$, $\varphi\leq\psi$, we prove that any solution $u$ of the problem $(-Au,v-u)\geq(f,v-u)$ for all $v\in K$, $u\in K=${$v\in H_0^1(\Omega)\colon\varphi\leq v\leq\psi$ a.e. in $\Omega$}, belongs to $W^{2,\infty}(\Omega)$. This generalizes the results of H. Brézis and D. Kinderlehrer [Indiana Univ. Math. J. 23 (1973/74), 831--844] in the case of two barriers.

Statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:Elliptic Operator; Generalized Solutions
Language:French
Date:1979
Deposited On:30 Oct 2009 14:27
Last Modified:22 Feb 2018 09:55
Publisher:Elsevier
ISSN:0151-0509
OA Status:Closed
Related URLs:http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0397.35015

Download

Full text not available from this repository.