Header

UZH-Logo

Maintenance Infos

Cell cycle-dependent cytotoxicity and induction of apoptosis by liposomal N4-hexadecyl-1-beta-D-arabinofuranosylcytosine


Horber, D H; von Ballmoos, P; Schott, H; Schwendener, R (1995). Cell cycle-dependent cytotoxicity and induction of apoptosis by liposomal N4-hexadecyl-1-beta-D-arabinofuranosylcytosine. British Journal of Cancer, 72(5):1067-1073.

Abstract

The clonogenic growth inhibition, the cell cycle dependence of N4-hexadecyl-1-beta-D-arabinofuranosylcytosine (NHAC) cytotoxicity and the capability to induce apoptosis in ara-C-sensitive and -resistant HL-60 cells were investigated and compared with arabinofuranosylcytosine (ara-C). In the clonogenic assay with sensitive HL-60 cells, ara-C was slightly more effective than a liposomal preparation of NHAC, whereas in the resistant cells, NHAC revealed its potency to overcome ara-C resistance, resulting in a 23-fold lower 50% inhibitory concentration compared with ara-C. Cell cycle dependent cytotoxicity and induction of apoptosis were studied by flow cytometry, using the bromodeoxyuridine-propidium iodide and terminal transferase method respectively. In contrast to ara-C, NHAC exerted no phase-specific toxicity at low concentrations (< 40 microM). At higher concentrations the S-phase-specific toxicity increased, probably resulting from ara-C formed from NHAC. NHAC induced apoptosis at higher drug concentrations than ara-C, however apoptosis appeared not to be limited to the S-phase cells. Apoptosis occurred in both cell lines within 2-4 h after drug exposure. These results give further evidence that NHAC exerts its cytotoxicity by different mechanisms of action than ara-C and might therefore be active in ara-C-resistant tumours.

Abstract

The clonogenic growth inhibition, the cell cycle dependence of N4-hexadecyl-1-beta-D-arabinofuranosylcytosine (NHAC) cytotoxicity and the capability to induce apoptosis in ara-C-sensitive and -resistant HL-60 cells were investigated and compared with arabinofuranosylcytosine (ara-C). In the clonogenic assay with sensitive HL-60 cells, ara-C was slightly more effective than a liposomal preparation of NHAC, whereas in the resistant cells, NHAC revealed its potency to overcome ara-C resistance, resulting in a 23-fold lower 50% inhibitory concentration compared with ara-C. Cell cycle dependent cytotoxicity and induction of apoptosis were studied by flow cytometry, using the bromodeoxyuridine-propidium iodide and terminal transferase method respectively. In contrast to ara-C, NHAC exerted no phase-specific toxicity at low concentrations (< 40 microM). At higher concentrations the S-phase-specific toxicity increased, probably resulting from ara-C formed from NHAC. NHAC induced apoptosis at higher drug concentrations than ara-C, however apoptosis appeared not to be limited to the S-phase cells. Apoptosis occurred in both cell lines within 2-4 h after drug exposure. These results give further evidence that NHAC exerts its cytotoxicity by different mechanisms of action than ara-C and might therefore be active in ara-C-resistant tumours.

Statistics

Citations

21 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 20 Oct 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1995
Deposited On:20 Oct 2009 13:28
Last Modified:05 Apr 2016 13:30
Publisher:Nature Publishing Group
ISSN:0007-0920
Additional Information:Free full text article
Publisher DOI:https://doi.org/10.1038/bjc.1995.466
PubMed ID:7577448

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations