Header

UZH-Logo

Maintenance Infos

First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps


Allen, S; Schneider, D; Owens, I F (2009). First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps. Natural Hazards and Earth System Sciences, 9:481-499.

Abstract

Flood and mass movements originating from glacial environments are particularly devastating in populated mountain regions of the world, but in the remote Mount Cook region of New Zealand’s Southern Alps minimal attention has been given to these processes. Glacial environments are characterized by high mass turnover and combined with changing climatic conditions, potential problems and process interactions can evolve rapidly. Remote sensing based terrain mapping, geographic information systems and flow path modelling are integrated here to explore the extent of ice avalanche, debris flow and lake flood hazard potential in the Mount Cook region. Numerous proglacial lakes have formed during recent decades, but well vegetated, low gradient outlet areas suggest catastrophic dam failure and flooding is unlikely. However, potential impacts from incoming mass movements of ice, debris or rock could lead to dam overtopping, particularly where lakes are forming directly beneath steep slopes. Physically based numerical modeling with RAMMS was introduced for local scale analyses of rock avalanche events, and was shown to be a useful tool for establishing accurate flow path dynamics and estimating potential event magnitudes. Potential debris flows originating from steep moraine and talus slopes can reach road and built infrastructure when worst-case runout distances are considered, while potential effects from ice avalanches are limited to walking tracks and alpine huts located in close proximity to initiation zones of steep ice. Further local scale studies of these processes are required, leading towards a full hazard assessment, and changing glacial conditions over coming decades will necessitate ongoing monitoring and reassessment of initiation zones and potential impacts.

Abstract

Flood and mass movements originating from glacial environments are particularly devastating in populated mountain regions of the world, but in the remote Mount Cook region of New Zealand’s Southern Alps minimal attention has been given to these processes. Glacial environments are characterized by high mass turnover and combined with changing climatic conditions, potential problems and process interactions can evolve rapidly. Remote sensing based terrain mapping, geographic information systems and flow path modelling are integrated here to explore the extent of ice avalanche, debris flow and lake flood hazard potential in the Mount Cook region. Numerous proglacial lakes have formed during recent decades, but well vegetated, low gradient outlet areas suggest catastrophic dam failure and flooding is unlikely. However, potential impacts from incoming mass movements of ice, debris or rock could lead to dam overtopping, particularly where lakes are forming directly beneath steep slopes. Physically based numerical modeling with RAMMS was introduced for local scale analyses of rock avalanche events, and was shown to be a useful tool for establishing accurate flow path dynamics and estimating potential event magnitudes. Potential debris flows originating from steep moraine and talus slopes can reach road and built infrastructure when worst-case runout distances are considered, while potential effects from ice avalanches are limited to walking tracks and alpine huts located in close proximity to initiation zones of steep ice. Further local scale studies of these processes are required, leading towards a full hazard assessment, and changing glacial conditions over coming decades will necessitate ongoing monitoring and reassessment of initiation zones and potential impacts.

Statistics

Citations

Dimensions.ai Metrics
29 citations in Web of Science®
34 citations in Scopus®
58 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

96 downloads since deposited on 30 Oct 2009
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2009
Deposited On:30 Oct 2009 09:59
Last Modified:17 Feb 2018 23:13
Publisher:Copernicus Publications
ISSN:1561-8633
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/nhess-9-481-2009

Download

Download PDF  'First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)