Header

UZH-Logo

Maintenance Infos

Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications - Zurich Open Repository and Archive


Angenendt, P; Glökler, J; Sobek, J; Lehrach, H; Cahill, D J (2003). Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. Journal of chromatography. A, 1009(1-2):97-104.

Test mit Language Auszeichnung: eng

Abstract

The performance of protein and antibody microarrays is dependent on various factors, one of which is the use of an appropriate microarray surface for the immobilisation of either protein or antibody samples. We have investigated the properties of seven new surfaces in the context of both protein and antibody microarray technology. We have demonstrated the functionality of all new slide coatings and investigated the mean signal to spotted concentration ratio, determined detection limits and calculated coefficients of variation. Moreover, new concepts for slide coatings such as dendrimer and poly(ethylene glycol)-epoxy slides were evaluated and improved qualities of novel slide surfaces were observed. Optimal slide coatings for antibody and protein chips were proposed and the requirements for both technologies were discussed.

Abstract

The performance of protein and antibody microarrays is dependent on various factors, one of which is the use of an appropriate microarray surface for the immobilisation of either protein or antibody samples. We have investigated the properties of seven new surfaces in the context of both protein and antibody microarray technology. We have demonstrated the functionality of all new slide coatings and investigated the mean signal to spotted concentration ratio, determined detection limits and calculated coefficients of variation. Moreover, new concepts for slide coatings such as dendrimer and poly(ethylene glycol)-epoxy slides were evaluated and improved qualities of novel slide surfaces were observed. Optimal slide coatings for antibody and protein chips were proposed and the requirements for both technologies were discussed.

Statistics

Citations

167 citations in Web of Science®
174 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2003
Deposited On:16 Dec 2009 15:21
Last Modified:05 Apr 2016 13:34
Publisher:Elsevier
ISSN:0021-9673
Publisher DOI:https://doi.org/10.1016/S0021-9673(03)00769-6
PubMed ID:13677649

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations