Header

UZH-Logo

Maintenance Infos

Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD


Rozhkova, A; Stirnimann, C U; Frei, P; Grauschopf, U; Brunisholz, R; Grütter, M G; Capitani, G; Glockshuber, R (2004). Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO Journal, 23(8):1709-1719.

Abstract

DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic disulfide isomerase DsbC. DsbD contains two periplasmically oriented domains at the N- and C-terminus (nDsbD and cDsbD) that are connected by a central transmembrane (TM) domain. Each domain contains a pair of cysteines that are essential for catalysis. Here, we show that Cys109 and Cys461 form a transient interdomain disulfide bond between nDsbD and cDsbD in the reaction cycle of DsbD. We solved the crystal structure of this catalytic intermediate at 2.85 A resolution, which revealed large relative domain movements in DsbD as a consequence of a strong overlap between the surface areas of nDsbD that interact with DsbC and cDsbD. In addition, we have measured the kinetics of all functional and nonfunctional disulfide exchange reactions between redox-active, periplasmic proteins and protein domains from the oxidative DsbA/B and the reductive DsbC/D pathway. We show that both pathways are separated by large kinetic barriers for nonfunctional disulfide exchange between components from different pathways.

Abstract

DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic disulfide isomerase DsbC. DsbD contains two periplasmically oriented domains at the N- and C-terminus (nDsbD and cDsbD) that are connected by a central transmembrane (TM) domain. Each domain contains a pair of cysteines that are essential for catalysis. Here, we show that Cys109 and Cys461 form a transient interdomain disulfide bond between nDsbD and cDsbD in the reaction cycle of DsbD. We solved the crystal structure of this catalytic intermediate at 2.85 A resolution, which revealed large relative domain movements in DsbD as a consequence of a strong overlap between the surface areas of nDsbD that interact with DsbC and cDsbD. In addition, we have measured the kinetics of all functional and nonfunctional disulfide exchange reactions between redox-active, periplasmic proteins and protein domains from the oxidative DsbA/B and the reductive DsbC/D pathway. We show that both pathways are separated by large kinetic barriers for nonfunctional disulfide exchange between components from different pathways.

Statistics

Citations

87 citations in Web of Science®
87 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 16 Dec 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2004
Deposited On:16 Dec 2009 14:30
Last Modified:05 Apr 2016 13:34
Publisher:Nature Publishing Group
ISSN:0261-4189
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/sj.emboj.7600178
PubMed ID:15057279

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations