Header

UZH-Logo

Maintenance Infos

Casting light on molecular events underlying anti-cancer drug treatment: what can be seen from the proteomics point of view?


Kraljevic, S; Sedic, M; Scott, M; Gehrig, P; Schlapbach, R; Pavelic, K (2006). Casting light on molecular events underlying anti-cancer drug treatment: what can be seen from the proteomics point of view? Cancer Treatment Reviews, 32(8):619-629.

Abstract

Regardless of continuous advances in technology and expansion of the knowledge in the field of genomic information, cancer still remains one of the leading causes of death in developed countries for many reasons, including non-selectiveness of commonly used anti-cancer drugs that often influence non-specific rather than tumour-specific targets. As cancer cells are characterized by the ability to divide and multiply in an uncontrolled manner whereby a set of specific proteins modulate cell division processes, proteomics seems to be a suitable tool for seeking out molecular mediators of anti-cancer drugs action and resistance, thus improving chemotherapy outcome. This review will focus on the recent knowledge of the molecular mechanisms involved in the anti-cancer drugs response revealed by the proteomics tools. In addition, we will touch upon the effects of "gene drugs" with p53 and p21(waf1/cip1) genes on the protein complement of tumour cells assessed by the two-dimensional gel electrophoresis combined with mass spectrometry. Such studies could substantially contribute to further drug optimization prior to its clinical use and represent an important but still small step in the long way of drug discovery. However, fluctuations in protein expression, distribution, posttranslational modifications, interactions, functions and compartmentalization make it difficult to use exclusively expression proteomics data without putting it in broader biological context. Thus, the challenge today is to shift from the identification of drug response and disease biomarkers to more time-consuming process of revealing the biochemical mechanism that connects a specific protein with a disease or cellular response to a drug.

Abstract

Regardless of continuous advances in technology and expansion of the knowledge in the field of genomic information, cancer still remains one of the leading causes of death in developed countries for many reasons, including non-selectiveness of commonly used anti-cancer drugs that often influence non-specific rather than tumour-specific targets. As cancer cells are characterized by the ability to divide and multiply in an uncontrolled manner whereby a set of specific proteins modulate cell division processes, proteomics seems to be a suitable tool for seeking out molecular mediators of anti-cancer drugs action and resistance, thus improving chemotherapy outcome. This review will focus on the recent knowledge of the molecular mechanisms involved in the anti-cancer drugs response revealed by the proteomics tools. In addition, we will touch upon the effects of "gene drugs" with p53 and p21(waf1/cip1) genes on the protein complement of tumour cells assessed by the two-dimensional gel electrophoresis combined with mass spectrometry. Such studies could substantially contribute to further drug optimization prior to its clinical use and represent an important but still small step in the long way of drug discovery. However, fluctuations in protein expression, distribution, posttranslational modifications, interactions, functions and compartmentalization make it difficult to use exclusively expression proteomics data without putting it in broader biological context. Thus, the challenge today is to shift from the identification of drug response and disease biomarkers to more time-consuming process of revealing the biochemical mechanism that connects a specific protein with a disease or cellular response to a drug.

Statistics

Citations

18 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:24 October 2006
Deposited On:18 Dec 2009 08:19
Last Modified:06 Dec 2017 22:05
Publisher:Elsevier
ISSN:0305-7372
Publisher DOI:https://doi.org/10.1016/j.ctrv.2006.09.002
PubMed ID:17069979

Download

Full text not available from this repository.
View at publisher