Header

UZH-Logo

Maintenance Infos

Proteome analysis of chloroplast mRNA processing and degradation


Baginsky, S; Grossmann, J; Gruissem, W (2007). Proteome analysis of chloroplast mRNA processing and degradation. Journal of Proteome Research, 6(2):809-820.

Abstract

Chloroplasts have a complex enzymatic machinery to adjust the relative half-life of their mRNAs to environmental signals. Soluble protein extracts from spinach (Spinacia oleracea L.) chloroplasts that correctly reproduce in vitro the differential mRNA stability observed in vivo were analyzed using shotgun proteomics to identify the proteins that are potentially involved in this process. The combination of a novel strategy for the database-independent detection of proteins from MS/MS data with standard database searches allowed us to identify 243 proteins with high confidence, which include several nucleases and RNA binding proteins but also proteins that have no reported function in chloroplast mRNA metabolism. Characterization of enzyme activities that adjust mRNA stability in response to illumination revealed that the dark-induced RNA degradation pathway involves enzymatic activities that differ from those that direct RNA processing and stabilization in the light. Dark-induced mRNA degradation comprises a MgCl2-independent and a MgCl2-dependent step, which releases nucleoside di- and monophosphates from the petD 3'-UTR precursor substrate. RNA degradation can be blocked with RNasin, a potent inhibitor of eukaryotic ribonucleases, suggesting that chloroplast mRNA degradation involves enzymes that are distinct from those found in prokaryotic-type RNA degradation. On the basis of the identified proteins and the in vitro characterization of the RNA degradation activities, we discuss scenarios and components that potentially determine plastid mRNA stability.

Abstract

Chloroplasts have a complex enzymatic machinery to adjust the relative half-life of their mRNAs to environmental signals. Soluble protein extracts from spinach (Spinacia oleracea L.) chloroplasts that correctly reproduce in vitro the differential mRNA stability observed in vivo were analyzed using shotgun proteomics to identify the proteins that are potentially involved in this process. The combination of a novel strategy for the database-independent detection of proteins from MS/MS data with standard database searches allowed us to identify 243 proteins with high confidence, which include several nucleases and RNA binding proteins but also proteins that have no reported function in chloroplast mRNA metabolism. Characterization of enzyme activities that adjust mRNA stability in response to illumination revealed that the dark-induced RNA degradation pathway involves enzymatic activities that differ from those that direct RNA processing and stabilization in the light. Dark-induced mRNA degradation comprises a MgCl2-independent and a MgCl2-dependent step, which releases nucleoside di- and monophosphates from the petD 3'-UTR precursor substrate. RNA degradation can be blocked with RNasin, a potent inhibitor of eukaryotic ribonucleases, suggesting that chloroplast mRNA degradation involves enzymes that are distinct from those found in prokaryotic-type RNA degradation. On the basis of the identified proteins and the in vitro characterization of the RNA degradation activities, we discuss scenarios and components that potentially determine plastid mRNA stability.

Statistics

Citations

15 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:December 2007
Deposited On:18 Dec 2009 12:58
Last Modified:06 Dec 2017 22:05
Publisher:American Chemical Society
ISSN:1535-3893
Publisher DOI:https://doi.org/10.1021/pr060473q
PubMed ID:17269737

Download

Full text not available from this repository.
View at publisher