Header

UZH-Logo

Maintenance Infos

Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source


Schmidt, D; Achermann, J; Odermatt, B; Breymann, C; Mol, A; Genoni, M; Zund, G; Hoerstrup, S P (2007). Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation, 116(11 Sup):I64-I70.

Abstract

BACKGROUND: A novel concept providing prenatally tissue engineered human autologous heart valves based on routinely obtained fetal amniotic fluid progenitors as single cell source is introduced. METHODS AND RESULTS: Fetal human amniotic progenitors were isolated from routinely sampled amniotic fluid and sorted using CD133 magnetic beads. After expansion and differentiation, cell phenotypes of CD133- and CD133+ cells were analyzed by immunohistochemistry and flowcytometry. After characterization, CD133- derived cells were seeded onto heart valve leaflet scaffolds (n=18) fabricated from rapidly biodegradable polymers, conditioned in a pulse duplicator system, and subsequently coated with CD133+ derived cells. After in vitro maturation, opening and closing behavior of leaflets was investigated. Neo-tissues were analyzed by histology, immunohistochemistry, and scanning electron microscopy (SEM). Extracellular matrix (ECM) elements and cell numbers were quantified biochemically. Mechanical properties were assessed by tensile testing. CD133- derived cells demonstrated characteristics of mesenchymal progenitors expressing CD44 and CD105. Differentiated CD133+ cells showed features of functional endothelial cells by eNOS and CD141 expression. Engineered heart valve leaflets demonstrated endothelialized tissue formation with production of ECM elements (GAG 80%, HYP 5%, cell number 100% of native values). SEM showed intact endothelial surfaces. Opening and closing behavior was sufficient under half of systemic conditions. CONCLUSIONS: The use of amniotic fluid as single cell source is a promising low-risk approach enabling the prenatal fabrication of heart valves ready to use at birth. These living replacements with the potential of growth, remodeling, and regeneration may realize the early repair of congenital malformations.

Abstract

BACKGROUND: A novel concept providing prenatally tissue engineered human autologous heart valves based on routinely obtained fetal amniotic fluid progenitors as single cell source is introduced. METHODS AND RESULTS: Fetal human amniotic progenitors were isolated from routinely sampled amniotic fluid and sorted using CD133 magnetic beads. After expansion and differentiation, cell phenotypes of CD133- and CD133+ cells were analyzed by immunohistochemistry and flowcytometry. After characterization, CD133- derived cells were seeded onto heart valve leaflet scaffolds (n=18) fabricated from rapidly biodegradable polymers, conditioned in a pulse duplicator system, and subsequently coated with CD133+ derived cells. After in vitro maturation, opening and closing behavior of leaflets was investigated. Neo-tissues were analyzed by histology, immunohistochemistry, and scanning electron microscopy (SEM). Extracellular matrix (ECM) elements and cell numbers were quantified biochemically. Mechanical properties were assessed by tensile testing. CD133- derived cells demonstrated characteristics of mesenchymal progenitors expressing CD44 and CD105. Differentiated CD133+ cells showed features of functional endothelial cells by eNOS and CD141 expression. Engineered heart valve leaflets demonstrated endothelialized tissue formation with production of ECM elements (GAG 80%, HYP 5%, cell number 100% of native values). SEM showed intact endothelial surfaces. Opening and closing behavior was sufficient under half of systemic conditions. CONCLUSIONS: The use of amniotic fluid as single cell source is a promising low-risk approach enabling the prenatal fabrication of heart valves ready to use at birth. These living replacements with the potential of growth, remodeling, and regeneration may realize the early repair of congenital malformations.

Statistics

Citations

36 citations in Web of Science®
92 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 08 Dec 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2007
Deposited On:08 Dec 2009 14:33
Last Modified:05 Apr 2016 13:37
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7322
Publisher DOI:https://doi.org/10.1161/CIRCULATIONAHA.106.681494
PubMed ID:17846327

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations