Header

UZH-Logo

Maintenance Infos

Abeta immunotherapy protects morphology and survival of adult-born neurons in doubly transgenic APP/PS1 mice


Biscaro, B; Lindvall, O; Hock, C; Ekdahl, C T; Nitsch, R M (2009). Abeta immunotherapy protects morphology and survival of adult-born neurons in doubly transgenic APP/PS1 mice. Journal of Neuroscience, 29(45):14108-14119.

Abstract

The hippocampus is heavily affected by progressive neurodegeneration and beta-amyloid pathology in Alzheimer's disease (AD). The hippocampus is also one of the few brain regions that generate new neurons throughout adulthood. Because hippocampal neurogenesis is regulated by both endogenous and environmental factors, we determined whether it benefits from therapeutic reduction of beta-amyloid peptide (Abeta)-related toxicity induced by passive Abeta immunotherapy. Abeta immunotherapy of 8-9-month-old mice expressing familial AD-causing mutations in the amyloid precursor protein and presenilin-1 genes with an antibody against Abeta decreased compact beta-amyloid plaque burden and promoted survival of newly born neurons in the hippocampal dentate gyrus. As these neurons matured, they exhibited longer dendrites with more complex arborization compared with newly born neurons in control-treated transgenic littermates. The newly born neurons showed signs of functional integration indicated by expression of the immediate-early gene Zif268 in response to exposure to a novel object. Abeta immunotherapy was associated with higher numbers of synaptophysin-positive synaptic boutons. Labeling dividing progenitor cells with a retroviral vector encoding green fluorescent protein (GFP) showed that Abeta immunotherapy restored the impaired dendritic branching, as well as the density of dendritic spines in new mature neurons. The presence of cellular prion protein (PrP(c)) on the dendrites of the GFP(+) newly born neurons is compatible with a putative role of PrP(c) in mediating Abeta-related toxicity in these cells. In addition, passive Abeta immunotherapy was accompanied by increased angiogenesis. Our data establish that passive Abeta immunotherapy can restore the morphological maturation of the newly formed neurons in the adult hippocampus and promote angiogenesis. These findings provide evidence for a role of Abeta immunotherapy in stimulating neurogenesis and angiogenesis in transgenic mouse models of AD, and they suggest the possibility that Abeta immunotherapy can recover neuronal and vascular functions in brains with beta-amyloidosis.

Abstract

The hippocampus is heavily affected by progressive neurodegeneration and beta-amyloid pathology in Alzheimer's disease (AD). The hippocampus is also one of the few brain regions that generate new neurons throughout adulthood. Because hippocampal neurogenesis is regulated by both endogenous and environmental factors, we determined whether it benefits from therapeutic reduction of beta-amyloid peptide (Abeta)-related toxicity induced by passive Abeta immunotherapy. Abeta immunotherapy of 8-9-month-old mice expressing familial AD-causing mutations in the amyloid precursor protein and presenilin-1 genes with an antibody against Abeta decreased compact beta-amyloid plaque burden and promoted survival of newly born neurons in the hippocampal dentate gyrus. As these neurons matured, they exhibited longer dendrites with more complex arborization compared with newly born neurons in control-treated transgenic littermates. The newly born neurons showed signs of functional integration indicated by expression of the immediate-early gene Zif268 in response to exposure to a novel object. Abeta immunotherapy was associated with higher numbers of synaptophysin-positive synaptic boutons. Labeling dividing progenitor cells with a retroviral vector encoding green fluorescent protein (GFP) showed that Abeta immunotherapy restored the impaired dendritic branching, as well as the density of dendritic spines in new mature neurons. The presence of cellular prion protein (PrP(c)) on the dendrites of the GFP(+) newly born neurons is compatible with a putative role of PrP(c) in mediating Abeta-related toxicity in these cells. In addition, passive Abeta immunotherapy was accompanied by increased angiogenesis. Our data establish that passive Abeta immunotherapy can restore the morphological maturation of the newly formed neurons in the adult hippocampus and promote angiogenesis. These findings provide evidence for a role of Abeta immunotherapy in stimulating neurogenesis and angiogenesis in transgenic mouse models of AD, and they suggest the possibility that Abeta immunotherapy can recover neuronal and vascular functions in brains with beta-amyloidosis.

Statistics

Citations

45 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

205 downloads since deposited on 03 Jan 2010
30 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:03 Jan 2010 11:25
Last Modified:16 Aug 2016 10:13
Publisher:Society for Neuroscience
ISSN:0270-6474
Additional Information:Holder of copyright: The Society for Neuroscience
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.2055-09.2009
PubMed ID:19906959

Download

Download PDF  'Abeta immunotherapy protects morphology and survival of adult-born neurons in doubly transgenic APP/PS1 mice'.
Preview
Filetype: PDF
Size: 5MB
View at publisher