Header

UZH-Logo

Maintenance Infos

Scaled limit and rate of convergence for the largest eigenvalue from the generalized Cauchy random matrix ensemble


Najnudel, J; Nikeghbali, A; Rubin, F (2009). Scaled limit and rate of convergence for the largest eigenvalue from the generalized Cauchy random matrix ensemble. Journal of Statistical Physics, 137(2):373-406.

Abstract

In this paper, we are interested in the asymptotic properties for the largest eigenvalue of the Hermitian random matrix ensemble, called the Generalized Cauchy ensemble GCyE, whose eigenvalues PDF is given by
$$\textrm{const}\cdot\prod_{1\leq j<k\leq N}(x_j-x_k)^2\prod_{j=1}^N(1+ix_j)^{-s-N}(1-ix_j)^{-\overline{s}-N}dx_j,$$ where s is a complex number such that ℜ(s)>−1/2 and where N is the size of the matrix ensemble. Using results by Borodin and Olshanski (Commun. Math. Phys., 223(1):87–123, 2001), we first prove that for this ensemble, the law of the largest eigenvalue divided by N converges to some probability distribution for all s such that ℜ(s)>−1/2. Using results by Forrester and Witte (Nagoya Math. J., 174:29–114, 2002) on the distribution of the largest eigenvalue for fixed N, we also express the limiting probability distribution in terms of some non-linear second order differential equation. Eventually, we show that the convergence of the probability distribution function of the re-scaled largest eigenvalue to the limiting one is at least of order (1/N).

Abstract

In this paper, we are interested in the asymptotic properties for the largest eigenvalue of the Hermitian random matrix ensemble, called the Generalized Cauchy ensemble GCyE, whose eigenvalues PDF is given by
$$\textrm{const}\cdot\prod_{1\leq j<k\leq N}(x_j-x_k)^2\prod_{j=1}^N(1+ix_j)^{-s-N}(1-ix_j)^{-\overline{s}-N}dx_j,$$ where s is a complex number such that ℜ(s)>−1/2 and where N is the size of the matrix ensemble. Using results by Borodin and Olshanski (Commun. Math. Phys., 223(1):87–123, 2001), we first prove that for this ensemble, the law of the largest eigenvalue divided by N converges to some probability distribution for all s such that ℜ(s)>−1/2. Using results by Forrester and Witte (Nagoya Math. J., 174:29–114, 2002) on the distribution of the largest eigenvalue for fixed N, we also express the limiting probability distribution in terms of some non-linear second order differential equation. Eventually, we show that the convergence of the probability distribution function of the re-scaled largest eigenvalue to the limiting one is at least of order (1/N).

Statistics

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 15 Jan 2010
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2009
Deposited On:15 Jan 2010 09:33
Last Modified:05 Apr 2016 13:44
Publisher:Springer
ISSN:0022-4715
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s10955-009-9854-6

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB