Header

UZH-Logo

Maintenance Infos

Speciation in sexually deceptive orchids: pollinator-driven selection maintains discrete odour phenotypes in hybridizing species


Stökl, J; Schlüter, P M; Stuessy, T F; Paulus, H F; Fraberger, R; Erdmann, D; Schulz, C; Francke, W; Assum, G; Ayasse, M (2009). Speciation in sexually deceptive orchids: pollinator-driven selection maintains discrete odour phenotypes in hybridizing species. Biological Journal of the Linnean Society, 98(2):439-451.

Abstract

Ophrys orchids mimic the female sex pheromones of their pollinator species to attract males for pollination. Reproductive isolation in Ophrys is based on the selective attraction of only a single pollinator species. A change of floral odour can result in the attraction of a new pollinator species that acts as an isolation barrier towards other sympatrically occurring Ophrys species. Ophrys lupercalis, Ophrys bilunulata, and Ophrys fabrella grow sympatrically and bloom consecutively on Majorca and are pollinated by three species of Andrena. We investigated variation of phenotypic and genotypic flower traits, aiming to study the role of the floral odour for reproductive isolation and speciation. Using chemical and electrophysiology (gas chromatography coupled with an electroantennographic detector) methods, we show that the three Ophrys species use the same odour compounds for pollinator attraction, but in different proportions. A comparison of the floral odour bouquets in a multivariate analysis revealed a clear grouping of plants from the same species, although with an overlap between species. A comparison of the same plants using molecular markers gave a contrasting result. Although O. lupercalis and O. fabrella were genetically well separated, plants of O. bilunulata did not form a distinct group but were similar to either O. lupercalis or O. fabrella. Our data indicate gene flow and hybridization to occur between O. bilunulata and O. lupercalis as well as between O. bilunulata and O. fabrella. All plants of O. bilunulata, despite having different genotypes, showed a very similar floral odour. This reflects a strong selective pressure by the pollinating males. The overlap of genotypes of O. bilunulata and O. fabrella supports our hypothesis that O. fabrella diverged from O. bilunulata by scent variation and the attraction of a new pollinator species, Andrena fabrella.

Abstract

Ophrys orchids mimic the female sex pheromones of their pollinator species to attract males for pollination. Reproductive isolation in Ophrys is based on the selective attraction of only a single pollinator species. A change of floral odour can result in the attraction of a new pollinator species that acts as an isolation barrier towards other sympatrically occurring Ophrys species. Ophrys lupercalis, Ophrys bilunulata, and Ophrys fabrella grow sympatrically and bloom consecutively on Majorca and are pollinated by three species of Andrena. We investigated variation of phenotypic and genotypic flower traits, aiming to study the role of the floral odour for reproductive isolation and speciation. Using chemical and electrophysiology (gas chromatography coupled with an electroantennographic detector) methods, we show that the three Ophrys species use the same odour compounds for pollinator attraction, but in different proportions. A comparison of the floral odour bouquets in a multivariate analysis revealed a clear grouping of plants from the same species, although with an overlap between species. A comparison of the same plants using molecular markers gave a contrasting result. Although O. lupercalis and O. fabrella were genetically well separated, plants of O. bilunulata did not form a distinct group but were similar to either O. lupercalis or O. fabrella. Our data indicate gene flow and hybridization to occur between O. bilunulata and O. lupercalis as well as between O. bilunulata and O. fabrella. All plants of O. bilunulata, despite having different genotypes, showed a very similar floral odour. This reflects a strong selective pressure by the pollinating males. The overlap of genotypes of O. bilunulata and O. fabrella supports our hypothesis that O. fabrella diverged from O. bilunulata by scent variation and the attraction of a new pollinator species, Andrena fabrella.

Statistics

Citations

21 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 19 Jan 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2009
Deposited On:19 Jan 2010 17:49
Last Modified:05 Apr 2016 13:45
Publisher:Wiley-Blackwell
ISSN:0024-4066
Publisher DOI:https://doi.org/10.1111/j.1095-8312.2009.01279.x

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations