Header

UZH-Logo

Maintenance Infos

Analysis of DNA methylation of multiple genes in microdissected cells from formalin-fixed and paraffin-embedded tissues


Dietrich, D; Lesche, R; Tetzner, R; Krispin, M; Dietrich, J; Haedicke, W; Schuster, M; Kristiansen, G (2009). Analysis of DNA methylation of multiple genes in microdissected cells from formalin-fixed and paraffin-embedded tissues. Journal of Histochemistry and Cytochemistry, 57(5):477-489.

Abstract

A procedure for simultaneous quantification of DNA methylation of several genes in minute amounts of sample material was developed and applied to microdissected formalin-fixed and paraffin-embedded breast tissues. The procedure is comprised of an optimized bisulfite treatment protocol suitable for samples containing only few cells, a multiplex preamplification and subsequent locus specific reamplification, and a novel quantitative bisulfite sequencing method based on the incorporation of a normalization domain into the PCR product. A real-time PCR assay amplifying repetitive elements was established to quantify low amounts of bisulfite-treated DNA. Ten prognostic and diagnostic epigenetic breast cancer biomarkers (PITX2, RASSF1A, PLAU, LHX3, PITX3, LIMK1, SLITRK1, SLIT2, HS3ST2, and TFF1) were analyzed in tissue samples obtained from two patients with invasive ductal carcinoma of the breast. The microdissected samples were obtained from several areas within the tumor tissue, including intraductal and invasive carcinoma, adenosis, and normal ductal epithelia of adjacent normal tissue, as well as stroma, tumor infiltrating lymphocytes, and adipose tissue. Overall, reliable quantification was possible for all genes. For most genes, increased DNA methylation in invasive and intraductal carcinoma cells compared with other tissue components was observed. For TFF1, decreased methylation levels were observed in tumor cells.

Abstract

A procedure for simultaneous quantification of DNA methylation of several genes in minute amounts of sample material was developed and applied to microdissected formalin-fixed and paraffin-embedded breast tissues. The procedure is comprised of an optimized bisulfite treatment protocol suitable for samples containing only few cells, a multiplex preamplification and subsequent locus specific reamplification, and a novel quantitative bisulfite sequencing method based on the incorporation of a normalization domain into the PCR product. A real-time PCR assay amplifying repetitive elements was established to quantify low amounts of bisulfite-treated DNA. Ten prognostic and diagnostic epigenetic breast cancer biomarkers (PITX2, RASSF1A, PLAU, LHX3, PITX3, LIMK1, SLITRK1, SLIT2, HS3ST2, and TFF1) were analyzed in tissue samples obtained from two patients with invasive ductal carcinoma of the breast. The microdissected samples were obtained from several areas within the tumor tissue, including intraductal and invasive carcinoma, adenosis, and normal ductal epithelia of adjacent normal tissue, as well as stroma, tumor infiltrating lymphocytes, and adipose tissue. Overall, reliable quantification was possible for all genes. For most genes, increased DNA methylation in invasive and intraductal carcinoma cells compared with other tissue components was observed. For TFF1, decreased methylation levels were observed in tumor cells.

Statistics

Citations

Dimensions.ai Metrics
44 citations in Web of Science®
51 citations in Scopus®
80 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 26 Jan 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:26 Jan 2010 11:36
Last Modified:17 Feb 2018 23:58
Publisher:Sage Publications
ISSN:0022-1554
OA Status:Closed
Publisher DOI:https://doi.org/10.1369/jhc.2009.953026
PubMed ID:19153192

Download