Header

UZH-Logo

Maintenance Infos

Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia


Bergmann, C; Fliegauf, M; Brüchle, N O; Frank, V; Olbrich, H; Kirschner, J; Schermer, B; Schmedding, I; Kispert, A; Kränzlin, B; Nürnberg, G; Becker, C; Grimm, T; Girschick, G; Lynch, S A; Kelehan, P; Senderek, J; Neuhaus, T J; Stallmach, T; Zentgraf, H; Nürnberg, P; Gretz, N; Lohaus, C; Lienkamp, S; Schäfer, T; Walz, G; Benzing, T; Zerres, K; Omran, H (2008). Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. American Journal of Human Genetics, 82(4):959-70.

Abstract

Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.

Abstract

Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.

Statistics

Citations

159 citations in Web of Science®
170 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

428 downloads since deposited on 04 Aug 2008
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:04 Aug 2008 08:38
Last Modified:03 Aug 2017 14:50
Publisher:Elsevier
ISSN:0002-9297
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.ajhg.2008.02.017
PubMed ID:18371931

Download

Download PDF  'Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher