Header

UZH-Logo

Maintenance Infos

VEGF profiling and angiogenesis in human microtissues


Kelm, J M; Diaz Sanchez-Bustamante, C; Ehler, E; Hoerstrup, S P; Djonov, V; Ittner, L; Fussenegger, M (2005). VEGF profiling and angiogenesis in human microtissues. Journal of Biotechnology, 118(2):213-229.

Abstract

Owing to its dual impact on tissue engineering (neovascularization of tissue implants) and cancer treatment (prevention of tumor-induced vascularization), management and elucidation of vascularization phenomena remain clinical priorities. Using a variety of primary human cells and (neoplastic) cell lines assembled in microtissues by gravity-enforced self-aggregation in hanging drops we (i) studied size and age-dependent VEGF production of microtissues in comparison to isogenic monolayer cultures, (ii) characterized the self-organization and VEGF-production potential of mixed-cell spheroids, (iii) analyzed VEGF-dependent capillary formation of human umbilical vein endothelial cells (HUVECs) cells coated onto several human primary cell spheroids, and (iv) profiled endostatin action on vascularization in human microtissues. Precise understanding of vascularization in human microtissues may foster advances in clinical tissue implant engineering, tumor treatment, as well as drug discovery and drug-function analysis.

Abstract

Owing to its dual impact on tissue engineering (neovascularization of tissue implants) and cancer treatment (prevention of tumor-induced vascularization), management and elucidation of vascularization phenomena remain clinical priorities. Using a variety of primary human cells and (neoplastic) cell lines assembled in microtissues by gravity-enforced self-aggregation in hanging drops we (i) studied size and age-dependent VEGF production of microtissues in comparison to isogenic monolayer cultures, (ii) characterized the self-organization and VEGF-production potential of mixed-cell spheroids, (iii) analyzed VEGF-dependent capillary formation of human umbilical vein endothelial cells (HUVECs) cells coated onto several human primary cell spheroids, and (iv) profiled endostatin action on vascularization in human microtissues. Precise understanding of vascularization in human microtissues may foster advances in clinical tissue implant engineering, tumor treatment, as well as drug discovery and drug-function analysis.

Statistics

Citations

48 citations in Web of Science®
50 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2005
Deposited On:23 Mar 2010 10:43
Last Modified:05 Apr 2016 13:51
Publisher:Elsevier
ISSN:0168-1656
Publisher DOI:https://doi.org/10.1016/j.jbiotec.2005.03.016
PubMed ID:15951040

Download

Full text not available from this repository.
View at publisher