Header

UZH-Logo

Maintenance Infos

Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley


Hanemann, A; Schweizer, G F; Cossu, R; Wicker, T; Röder, M S (2009). Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theoretical and Applied Genetics, 119(8):1507-1522.

Abstract

The Rrs2 gene confers resistance to the fungal pathogen Rhynchosporium secalis which causes leaf scald, a major barley disease. The Rrs2 gene was fine mapped to an interval of 0.08 cM between markers 693M6_6 and P1D23R on the distal end of barley chromosome 7HS using an Atlas (resistant) x Steffi (susceptible) mapping population of 9,179 F(2)-plants. The establishment of a physical map of the Rrs2 locus led to the discovery that Rrs2 is located in an area of suppressed recombination within this mapping population. The analysis of 58 barley genotypes revealed a large linkage block at the Rrs2 locus extending over several hundred kb which is present only in Rrs2 carrying cultivars. Due to the lack of recombination in the mapping population and the presence of a Rrs2-specific linkage block, we assume a local chromosomal rearrangement (alien introgression or inversion) in Rrs2 carrying varieties. The variety analysis led to the discovery of eight SNPs which were diagnostic for the Rrs2 phenotype. Based on these SNPs diagnostic molecular markers (CAPS and pyrosequencing markers) were developed which are highly useful for marker-assisted selection in resistance gene pyramiding programmes for Rhynchosporium secalis resistance in barley.

Abstract

The Rrs2 gene confers resistance to the fungal pathogen Rhynchosporium secalis which causes leaf scald, a major barley disease. The Rrs2 gene was fine mapped to an interval of 0.08 cM between markers 693M6_6 and P1D23R on the distal end of barley chromosome 7HS using an Atlas (resistant) x Steffi (susceptible) mapping population of 9,179 F(2)-plants. The establishment of a physical map of the Rrs2 locus led to the discovery that Rrs2 is located in an area of suppressed recombination within this mapping population. The analysis of 58 barley genotypes revealed a large linkage block at the Rrs2 locus extending over several hundred kb which is present only in Rrs2 carrying cultivars. Due to the lack of recombination in the mapping population and the presence of a Rrs2-specific linkage block, we assume a local chromosomal rearrangement (alien introgression or inversion) in Rrs2 carrying varieties. The variety analysis led to the discovery of eight SNPs which were diagnostic for the Rrs2 phenotype. Based on these SNPs diagnostic molecular markers (CAPS and pyrosequencing markers) were developed which are highly useful for marker-assisted selection in resistance gene pyramiding programmes for Rhynchosporium secalis resistance in barley.

Statistics

Citations

19 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

326 downloads since deposited on 05 Feb 2010
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2009
Deposited On:05 Feb 2010 12:10
Last Modified:21 Nov 2017 14:40
Publisher:Springer
ISSN:0040-5752
Publisher DOI:https://doi.org/10.1007/s00122-009-1152-9
PubMed ID:19789848

Download

Download PDF  'Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley'.
Preview
Filetype: PDF
Size: 106kB
View at publisher