Header

UZH-Logo

Maintenance Infos

Bond strength durability of a resin composite on a reinforced ceramic using various repair systems


Özcan, M; Valandro, L F; Amaral, R; Leite, F; Bottino, M A (2009). Bond strength durability of a resin composite on a reinforced ceramic using various repair systems. Dental Materials, 25(12):1477-1483.

Abstract

OBJECTIVES: This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems. METHODS: Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid+silanization+adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30microm SiO(2)+silanization (ESPE)-Sil)+adhesive (Visio-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H(3)PO(4)+Clearfil Porcelain Bond Activator+Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (microTBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1mm/min). Failure types were analyzed under an optical microscope and SEM. RESULTS: microTBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p<0.001) repair bond strength (19.8+/-3.8MPa) than those of CJ and CL (12.4+/-4.7 and 9.9+/-2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5+/-3.1MPa) than those of PR (12.1+/-2.6MPa) (p<0.01) and CL (4.2+/-2.1MPa) (p<0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%). SIGNIFICANCE: Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested.

Abstract

OBJECTIVES: This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems. METHODS: Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid+silanization+adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30microm SiO(2)+silanization (ESPE)-Sil)+adhesive (Visio-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H(3)PO(4)+Clearfil Porcelain Bond Activator+Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (microTBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1mm/min). Failure types were analyzed under an optical microscope and SEM. RESULTS: microTBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p<0.001) repair bond strength (19.8+/-3.8MPa) than those of CJ and CL (12.4+/-4.7 and 9.9+/-2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5+/-3.1MPa) than those of PR (12.1+/-2.6MPa) (p<0.01) and CL (4.2+/-2.1MPa) (p<0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%). SIGNIFICANCE: Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested.

Statistics

Citations

23 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

240 downloads since deposited on 12 Feb 2010
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Fixed and Removable Prosthodontics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:December 2009
Deposited On:12 Feb 2010 06:19
Last Modified:05 Apr 2016 13:54
Publisher:Elsevier
ISSN:0109-5641
Publisher DOI:https://doi.org/10.1016/j.dental.2009.06.020
Related URLs:http://www.elsevier.com/wps/find/journaldescription.cws_home/601024/description#description (Publisher)
PubMed ID:19671476

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations