Header

UZH-Logo

Maintenance Infos

Localization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina


Iandiev, I; Pannicke, T; Hollborn, M; Wiedemann, P; Reichenbach, A; Grimm, C; Remé, C E; Bringmann, A (2008). Localization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina. Neuroscience Letters, 434:317-321.

Abstract

Excessive light causes damage to photoreceptor and pigment epithelial cells, and a local edema in the outer retina. Since Müller glial cells normally mediate the osmohomeostasis in the inner retina (mainly via channel-mediated transport of potassium and water), we determined whether retinal light injury causes an alteration in the retinal localization of glial water (aquaporin-4) and potassium (Kir4.1) channels, and in the potassium conductance of Müller cells. Mice were treated with bright white light (intensity, 15,000 lux) for two hours. Light treatment results in Müller cell gliosis as indicated by the enhanced staining of the glial fibrillary acidic protein and an increase in the cell membrane area reflecting cellular hypertrophy. In light-injured retinas, the immunostaining of the photoreceptor water channel aquaporin-1 disappeared along with the degeneration of the outer retina, and the outer nuclear layer contained large spherical bodies representing photoreceptor nuclei which were fused together. The immunostainings of the aquaporin-4 and Kir4.1 proteins were increased in the outer retina after light treatment. Since the amplitude of the potassium currents of Müller cells remained largely unaltered, the increase in the Kir4.1 immunostaining is supposed to be caused by a redistribution of the channel protein. The data indicate that Müller glial cells respond to excessive light with an alteration in the localization of Kir4.1 and aquaporin-4 proteins; this alteration is thought to be a response to the edema in the outer retina and may support the resolution of edema.

Abstract

Excessive light causes damage to photoreceptor and pigment epithelial cells, and a local edema in the outer retina. Since Müller glial cells normally mediate the osmohomeostasis in the inner retina (mainly via channel-mediated transport of potassium and water), we determined whether retinal light injury causes an alteration in the retinal localization of glial water (aquaporin-4) and potassium (Kir4.1) channels, and in the potassium conductance of Müller cells. Mice were treated with bright white light (intensity, 15,000 lux) for two hours. Light treatment results in Müller cell gliosis as indicated by the enhanced staining of the glial fibrillary acidic protein and an increase in the cell membrane area reflecting cellular hypertrophy. In light-injured retinas, the immunostaining of the photoreceptor water channel aquaporin-1 disappeared along with the degeneration of the outer retina, and the outer nuclear layer contained large spherical bodies representing photoreceptor nuclei which were fused together. The immunostainings of the aquaporin-4 and Kir4.1 proteins were increased in the outer retina after light treatment. Since the amplitude of the potassium currents of Müller cells remained largely unaltered, the increase in the Kir4.1 immunostaining is supposed to be caused by a redistribution of the channel protein. The data indicate that Müller glial cells respond to excessive light with an alteration in the localization of Kir4.1 and aquaporin-4 proteins; this alteration is thought to be a response to the edema in the outer retina and may support the resolution of edema.

Statistics

Citations

9 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

211 downloads since deposited on 09 Sep 2008
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:09 Sep 2008 09:38
Last Modified:05 Apr 2016 12:26
Publisher:Elsevier
ISSN:0304-3940
Publisher DOI:https://doi.org/10.1016/j.neulet.2008.02.026
PubMed ID:18328627

Download

Download PDF  'Localization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher