Header

UZH-Logo

Maintenance Infos

Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome


Abstract

BACKGROUND: Children with Down's syndrome have a greatly increased risk of acute megakaryoblastic and acute lymphoblastic leukaemias. Acute megakaryoblastic leukaemia in Down's syndrome is characterised by a somatic mutation in GATA1. Constitutive activation of the JAK/STAT (Janus kinase and signal transducer and activator of transcription) pathway occurs in several haematopoietic malignant diseases. We tested the hypothesis that mutations in JAK2 might be a common molecular event in acute lymphoblastic leukaemia associated with Down's syndrome. METHODS: JAK2 DNA mutational analysis was done on diagnostic bone marrow samples obtained from 88 patients with Down's syndrome-associated acute lymphoblastic leukaemia; and 216 patients with sporadic acute lymphoblastic leukaemia, Down's syndrome-associated acute megakaryoblastic leukaemia, and essential thrombocythaemia. Functional consequences of identified mutations were studied in mouse haematopoietic progenitor cells. FINDINGS: Somatically acquired JAK2 mutations were identified in 16 (18%) patients with Down's syndrome-associated acute lymphoblastic leukaemia. The only patient with non-Down's syndrome-associated leukaemia but with a JAK2 mutation had an isochromosome 21q. Children with a JAK2 mutation were younger (mean [SE] age 4.5 years [0.86] vs 8.6 years [0.59], p<0.0001) at diagnosis. Five mutant alleles were identified, each affecting a highly conserved arginine residue (R683). These mutations immortalised primary mouse haematopoietic progenitor cells in vitro, and caused constitutive Jak/Stat activation and cytokine-independent growth of BaF3 cells, which was sensitive to pharmacological inhibition with JAK inhibitor I. In modelling studies of the JAK2 pseudokinase domain, R683 was situated in an exposed conserved region separated from the one implicated in myeloproliferative disorders. INTERPRETATION: A specific genotype-phenotype association exists between the type of somatic mutation within the JAK2 pseudokinase domain and the development of B-lymphoid or myeloid neoplasms. Somatically acquired R683 JAK2 mutations define a distinct acute lymphoblastic leukaemia subgroup that is uniquely associated with trisomy 21. JAK2 inhibitors could be useful for treatment of this leukaemia. FUNDING: Israel Trade Ministry, Israel Science Ministry, Jewish National Fund UK, Sam Waxman Cancer Research Foundation, Israel Science Foundation, Israel Cancer Association, Curtis Katz, Constantiner Institute for Molecular Genetics, German-Israel Foundation, and European Commission FP6 Integrated Project EUROHEAR.

Abstract

BACKGROUND: Children with Down's syndrome have a greatly increased risk of acute megakaryoblastic and acute lymphoblastic leukaemias. Acute megakaryoblastic leukaemia in Down's syndrome is characterised by a somatic mutation in GATA1. Constitutive activation of the JAK/STAT (Janus kinase and signal transducer and activator of transcription) pathway occurs in several haematopoietic malignant diseases. We tested the hypothesis that mutations in JAK2 might be a common molecular event in acute lymphoblastic leukaemia associated with Down's syndrome. METHODS: JAK2 DNA mutational analysis was done on diagnostic bone marrow samples obtained from 88 patients with Down's syndrome-associated acute lymphoblastic leukaemia; and 216 patients with sporadic acute lymphoblastic leukaemia, Down's syndrome-associated acute megakaryoblastic leukaemia, and essential thrombocythaemia. Functional consequences of identified mutations were studied in mouse haematopoietic progenitor cells. FINDINGS: Somatically acquired JAK2 mutations were identified in 16 (18%) patients with Down's syndrome-associated acute lymphoblastic leukaemia. The only patient with non-Down's syndrome-associated leukaemia but with a JAK2 mutation had an isochromosome 21q. Children with a JAK2 mutation were younger (mean [SE] age 4.5 years [0.86] vs 8.6 years [0.59], p<0.0001) at diagnosis. Five mutant alleles were identified, each affecting a highly conserved arginine residue (R683). These mutations immortalised primary mouse haematopoietic progenitor cells in vitro, and caused constitutive Jak/Stat activation and cytokine-independent growth of BaF3 cells, which was sensitive to pharmacological inhibition with JAK inhibitor I. In modelling studies of the JAK2 pseudokinase domain, R683 was situated in an exposed conserved region separated from the one implicated in myeloproliferative disorders. INTERPRETATION: A specific genotype-phenotype association exists between the type of somatic mutation within the JAK2 pseudokinase domain and the development of B-lymphoid or myeloid neoplasms. Somatically acquired R683 JAK2 mutations define a distinct acute lymphoblastic leukaemia subgroup that is uniquely associated with trisomy 21. JAK2 inhibitors could be useful for treatment of this leukaemia. FUNDING: Israel Trade Ministry, Israel Science Ministry, Jewish National Fund UK, Sam Waxman Cancer Research Foundation, Israel Science Foundation, Israel Cancer Association, Curtis Katz, Constantiner Institute for Molecular Genetics, German-Israel Foundation, and European Commission FP6 Integrated Project EUROHEAR.

Statistics

Citations

187 citations in Web of Science®
202 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 17 May 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:17 May 2010 16:54
Last Modified:05 Apr 2016 14:06
Publisher:Elsevier
ISSN:0140-6736
Publisher DOI:https://doi.org/10.1016/S0140-6736(08)61341-0
PubMed ID:18805579

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 382kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations