Header

UZH-Logo

Maintenance Infos

A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine


Brown, T C; Jiricny, J (1987). A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell, 50(6):945-950.

Abstract

5-Methylcytosine spontaneously deaminates to form thymine, thus generating G/T mispairs in DNA. We investigated the way in which these lesions are addressed in mammalian cells by introducing specific G/T mispairs into the genome of SV40 and determining the fate of the mismatched bases in simian cells. Mispairs were incorporated in 12 bp synthetic duplexes ligated into SV40 DNA between the BstXI and TaqI restriction sites. Analysis of 347 plaques obtained after transfection of this modified DNA indicated that mispairs were corrected in 343 cases (99%), revealing 314 repair events in favor of guanine (90%) and 29 in favor of thymine (8%). Correction in favor of guanine occurred regardless of the orientation of the mispair in DNA and regardless of whether the mispair was in the commonly methylated CpG dinucleotide. These results attest to a specific mismatch repair pathway that restores G/C pairs lost through deamination of 5-methylcytosine residues.

Abstract

5-Methylcytosine spontaneously deaminates to form thymine, thus generating G/T mispairs in DNA. We investigated the way in which these lesions are addressed in mammalian cells by introducing specific G/T mispairs into the genome of SV40 and determining the fate of the mismatched bases in simian cells. Mispairs were incorporated in 12 bp synthetic duplexes ligated into SV40 DNA between the BstXI and TaqI restriction sites. Analysis of 347 plaques obtained after transfection of this modified DNA indicated that mispairs were corrected in 343 cases (99%), revealing 314 repair events in favor of guanine (90%) and 29 in favor of thymine (8%). Correction in favor of guanine occurred regardless of the orientation of the mispair in DNA and regardless of whether the mispair was in the commonly methylated CpG dinucleotide. These results attest to a specific mismatch repair pathway that restores G/C pairs lost through deamination of 5-methylcytosine residues.

Statistics

Citations

160 citations in Web of Science®
121 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Jul 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1987
Deposited On:09 Jul 2010 08:55
Last Modified:05 Apr 2016 14:09
Publisher:Elsevier
ISSN:0092-8674
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/0092-8674(87)90521-6
PubMed ID:3040266

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations