Header

UZH-Logo

Maintenance Infos

Recent progress in the biology, chemistry and structural biology of DNA glycosylases


Schärer, O D; Jiricny, J (2001). Recent progress in the biology, chemistry and structural biology of DNA glycosylases. BioEssays, 23(3):270-281.

Abstract

Since the discovery in 1974 of uracil DNA glycosylase (UDG), the first member of the family of enzymes involved in base excision repair (BER), considerable progress has been made in the understanding of DNA glycosylases, the polypeptides that remove damaged or mispaired DNA bases from DNA. We also know the enzymes that act downstream of the glycosylases, in the processing of abasic sites, in gap filling and in DNA ligation. This article covers the most recent developments in our understanding of BER, with particular emphasis on the mechanistic aspects of this process, which have been made possible by the elucidation of the crystal structures of several glycosylases in complex with their respective substrates, substrate analogues and products. The biological importance of individual BER pathways is also being appreciated through the inactivation of key BER genes in knockout mouse models.

Abstract

Since the discovery in 1974 of uracil DNA glycosylase (UDG), the first member of the family of enzymes involved in base excision repair (BER), considerable progress has been made in the understanding of DNA glycosylases, the polypeptides that remove damaged or mispaired DNA bases from DNA. We also know the enzymes that act downstream of the glycosylases, in the processing of abasic sites, in gap filling and in DNA ligation. This article covers the most recent developments in our understanding of BER, with particular emphasis on the mechanistic aspects of this process, which have been made possible by the elucidation of the crystal structures of several glycosylases in complex with their respective substrates, substrate analogues and products. The biological importance of individual BER pathways is also being appreciated through the inactivation of key BER genes in knockout mouse models.

Statistics

Citations

201 citations in Web of Science®
208 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Jul 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2001
Deposited On:09 Jul 2010 13:20
Last Modified:07 Dec 2017 02:42
Publisher:Wiley-Blackwell
ISSN:0265-9247
Publisher DOI:https://doi.org/10.1002/1521-1878(200103)23:3<270::AID-BIES1037>3.0.CO;2-J
PubMed ID:11223884

Download