Header

UZH-Logo

Maintenance Infos

Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands


Michels, Lars; Bucher, K; Lüchinger, R; Klaver, P; Martin, E; Jeanmonod, D; Brandeis, D (2010). Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS ONE, 5(4):e10298.

Abstract

BACKGROUND: EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. METHODOLOGY: In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. PRINCIPAL FINDINGS: We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects. CONCLUSIONS: We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.

Abstract

BACKGROUND: EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. METHODOLOGY: In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. PRINCIPAL FINDINGS: We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects. CONCLUSIONS: We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.

Statistics

Citations

84 citations in Web of Science®
85 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

141 downloads since deposited on 05 Jul 2010
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Psychiatric University Hospital Zurich > Center for Child and Adolescent Psychiatry
04 Faculty of Medicine > Center for Integrative Human Physiology
06 Faculty of Arts > Institute of Psychology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:570 Life sciences; biology
150 Psychology
610 Medicine & health
Language:English
Date:22 April 2010
Deposited On:05 Jul 2010 12:08
Last Modified:27 Aug 2017 05:17
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0010298
PubMed ID:20421978

Download

Download PDF  'Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)