Header

UZH-Logo

Maintenance Infos

Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation


Grossi, S; Puglisi, A; Dmitriev, P V; Lopes, M; Shore, D (2004). Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes and Development, 18(9):992-1006.

Abstract

The regulation of telomerase action, and its coordination with conventional DNA replication and chromosome end "capping," are still poorly understood. Here we describe a genetic screen in yeast for mutants with relaxed telomere length regulation, and the identification of Pol12, the B subunit of the DNA polymerase alpha (Pol1)-primase complex, as a new factor involved in this process. Unlike many POL1 and POL12 mutations, which also cause telomere elongation, the pol12-216 mutation described here does not lead to either reduced Pol1 function, increased telomeric single-stranded DNA, or a reduction in telomeric gene silencing. Instead, and again unlike mutations affecting POL1, pol12-216 is lethal in combination with a mutation in the telomere end-binding and capping protein Stn1. Significantly, Pol12 and Stn1 interact in both two-hybrid and biochemical assays, and their synthetic-lethal interaction appears to be caused, at least in part, by a loss of telomere capping. These data reveal a novel function for Pol12 and a new connection between DNA polymerase alpha and Stn1. We propose that Pol12, together with Stn1, plays a key role in linking telomerase action with the completion of lagging strand synthesis, and in a regulatory step required for telomere capping.

Abstract

The regulation of telomerase action, and its coordination with conventional DNA replication and chromosome end "capping," are still poorly understood. Here we describe a genetic screen in yeast for mutants with relaxed telomere length regulation, and the identification of Pol12, the B subunit of the DNA polymerase alpha (Pol1)-primase complex, as a new factor involved in this process. Unlike many POL1 and POL12 mutations, which also cause telomere elongation, the pol12-216 mutation described here does not lead to either reduced Pol1 function, increased telomeric single-stranded DNA, or a reduction in telomeric gene silencing. Instead, and again unlike mutations affecting POL1, pol12-216 is lethal in combination with a mutation in the telomere end-binding and capping protein Stn1. Significantly, Pol12 and Stn1 interact in both two-hybrid and biochemical assays, and their synthetic-lethal interaction appears to be caused, at least in part, by a loss of telomere capping. These data reveal a novel function for Pol12 and a new connection between DNA polymerase alpha and Stn1. We propose that Pol12, together with Stn1, plays a key role in linking telomerase action with the completion of lagging strand synthesis, and in a regulatory step required for telomere capping.

Statistics

Citations

88 citations in Web of Science®
89 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Jul 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Date:2004
Deposited On:30 Jul 2010 12:30
Last Modified:07 Dec 2017 03:03
Publisher:Cold Spring Harbor Laboratory Press
ISSN:0890-9369
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1101/gad.300004
PubMed ID:15132993

Download