Header

UZH-Logo

Maintenance Infos

Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases


Müller, A; Günther, D; Düx, F; Naumann, M; Meyer, T F; Rudel, T (1999). Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO Journal, 18(2):339-352.

Abstract

The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis.

Abstract

The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis.

Statistics

Citations

121 citations in Web of Science®
129 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Aug 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1999
Deposited On:17 Aug 2010 11:34
Last Modified:07 Dec 2017 03:10
Publisher:Nature Publishing Group
ISSN:0261-4189
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/emboj/18.2.339
PubMed ID:9889191

Download