Header

UZH-Logo

Maintenance Infos

Urinary proteomics before and after extracorporeal circulation in patients with and without acute kidney injury


Aregger, F; Pilop, C; Uehlinger, D E; Brunisholz, R; Carrel, T P; Frey, F J; Frey, Brigitte M (2010). Urinary proteomics before and after extracorporeal circulation in patients with and without acute kidney injury. The Journal of Thoracic and Cardiovascular Surgery, 139(3):692-700.

Abstract

OBJECTIVE: Acute kidney injury is a well-known complication with high morbidity and mortality after cardiopulmonary bypass. Cardiopulmonary bypass-associated acute kidney injury is still poorly understood. METHODS: Thirty-six patients undergoing elective cardiopulmonary bypass were enrolled. Spot urine samples before and after cardiopulmonary bypass were collected. Acute kidney injury was defined according to the RIFLE classification. To identify differentially regulated proteins after cardiopulmonary bypass, we first analyzed the urinary proteome before and after cardiopulmonary bypass. To identify differentially regulated proteins in acute kidney injury, we next compared the urinary proteome obtained on the first postoperative day between patients with and without acute kidney injury. Difference fluorescence gel electrophoresis was used to compare protein profiles and mass spectrometry to identify individual proteins. RESULTS: After cardiopulmonary bypass, inflammation-associated (zinc-alpha-2-glycoprotein, leucine-rich alpha-2-glycoprotein, mannan-binding lectin serine protease 2, basement membrane-specific heparan sulfate proteoglycan, and immunoglobulin kappa) or tubular dysfunction-associated (retinol-binding protein, adrenomedullin-binding protein, and uromodulin) proteins were differentially regulated. Acute kidney injury developed in 6 of 36 patients. A modified urinary albumin was increased, and zinc-alpha-2-glycoprotein and a fragment of adrenomedullin-binding protein were decreased in patients with acute kidney injury. Decreased excretion of zinc-alpha-2-glycoprotein in patients with acute kidney injury was confirmed by Western blot and enzyme-linked immunosorbent assay in an independent cohort of 22 patients with and 46 patients without acute kidney injury. CONCLUSION: Cardiopulmonary bypass leads to increased urinary excretion of inflammatory proteins and markers of tubular injury. Zinc-alpha-2-glycoprotein is a potentially useful predictive marker for acute kidney injury after cardiopulmonary bypass surgery.

Abstract

OBJECTIVE: Acute kidney injury is a well-known complication with high morbidity and mortality after cardiopulmonary bypass. Cardiopulmonary bypass-associated acute kidney injury is still poorly understood. METHODS: Thirty-six patients undergoing elective cardiopulmonary bypass were enrolled. Spot urine samples before and after cardiopulmonary bypass were collected. Acute kidney injury was defined according to the RIFLE classification. To identify differentially regulated proteins after cardiopulmonary bypass, we first analyzed the urinary proteome before and after cardiopulmonary bypass. To identify differentially regulated proteins in acute kidney injury, we next compared the urinary proteome obtained on the first postoperative day between patients with and without acute kidney injury. Difference fluorescence gel electrophoresis was used to compare protein profiles and mass spectrometry to identify individual proteins. RESULTS: After cardiopulmonary bypass, inflammation-associated (zinc-alpha-2-glycoprotein, leucine-rich alpha-2-glycoprotein, mannan-binding lectin serine protease 2, basement membrane-specific heparan sulfate proteoglycan, and immunoglobulin kappa) or tubular dysfunction-associated (retinol-binding protein, adrenomedullin-binding protein, and uromodulin) proteins were differentially regulated. Acute kidney injury developed in 6 of 36 patients. A modified urinary albumin was increased, and zinc-alpha-2-glycoprotein and a fragment of adrenomedullin-binding protein were decreased in patients with acute kidney injury. Decreased excretion of zinc-alpha-2-glycoprotein in patients with acute kidney injury was confirmed by Western blot and enzyme-linked immunosorbent assay in an independent cohort of 22 patients with and 46 patients without acute kidney injury. CONCLUSION: Cardiopulmonary bypass leads to increased urinary excretion of inflammatory proteins and markers of tubular injury. Zinc-alpha-2-glycoprotein is a potentially useful predictive marker for acute kidney injury after cardiopulmonary bypass surgery.

Statistics

Citations

15 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:07 Sep 2010 14:02
Last Modified:07 Dec 2017 03:15
Publisher:Elsevier
ISSN:0022-5223
Publisher DOI:https://doi.org/10.1016/j.jtcvs.2009.11.015
PubMed ID:20176211

Download

Full text not available from this repository.
View at publisher