Header

UZH-Logo

Maintenance Infos

Selective and sensitive monitoring of caspase-1 activity by a novel bioluminescent activity-based probe


Kindermann, M; Roschitzki-Voser, H; Caglic, D; Repnik, U; Miniejew, C; Mittl, P R E; Kosec, G; Grütter, M G; Turk, B; Wendt, K U (2010). Selective and sensitive monitoring of caspase-1 activity by a novel bioluminescent activity-based probe. Chemistry & Biology, 17(9):999-1007.

Abstract

The role of caspase-1 in inflammation has been studied intensely over recent years. However, the research of caspase-1 has remained difficult mainly due to the lack of sensitive and selective tools to monitor not only its abundance but also its activity. Here we present a bioluminescent activity-based probe (ABP) for caspase-1, developed by the Reverse Design concept, where chemically optimized protease inhibitors are turned into selective substrate ABPs. The probe exhibits excellent selectivity for caspase-1 and ∼1000-fold increase in sensitivity compared to available fluorogenic peptidic caspase-1 substrates. Moreover, we have been able to monitor and quantify specific caspase-1 activity directly in cell lysates. The activity correlated well with processing of prointerleukin-1β and prointerleukin-18 in phorbol 12-myristate 13-acetate (PMA)-stimulated cells. A detectable caspase-1 activity was present also in nonstimulated cells, consistent with processing of constitutively expressed prointerleukin-18.

Abstract

The role of caspase-1 in inflammation has been studied intensely over recent years. However, the research of caspase-1 has remained difficult mainly due to the lack of sensitive and selective tools to monitor not only its abundance but also its activity. Here we present a bioluminescent activity-based probe (ABP) for caspase-1, developed by the Reverse Design concept, where chemically optimized protease inhibitors are turned into selective substrate ABPs. The probe exhibits excellent selectivity for caspase-1 and ∼1000-fold increase in sensitivity compared to available fluorogenic peptidic caspase-1 substrates. Moreover, we have been able to monitor and quantify specific caspase-1 activity directly in cell lysates. The activity correlated well with processing of prointerleukin-1β and prointerleukin-18 in phorbol 12-myristate 13-acetate (PMA)-stimulated cells. A detectable caspase-1 activity was present also in nonstimulated cells, consistent with processing of constitutively expressed prointerleukin-18.

Statistics

Citations

19 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 09 Nov 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2010
Deposited On:09 Nov 2010 15:40
Last Modified:05 Apr 2016 14:15
Publisher:Elsevier
ISSN:1074-5521
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.chembiol.2010.07.011
PubMed ID:20851349

Download