Header

UZH-Logo

Maintenance Infos

Free energy surface of two- and three-dimensional transitions of Au 12 nanoclusters obtained by ab initio metadynamics


Santarossa, G; Vargas, A; Iannuzzi, M; Baiker, A (2010). Free energy surface of two- and three-dimensional transitions of Au 12 nanoclusters obtained by ab initio metadynamics. Physical Review B, 81(17):174205.

Abstract

The description of the conformational space generated by metal nanoparticles is a fundamental issue for the study of their physicochemical properties. In this investigation, an exhaustive exploration and a unified view of the conformational space of a gold nanocluster is provided using a Au 12 cluster as an example. Such system is characterized by coexisting planar/quasiplanar and tridimensional conformations separated by high-energy barriers. The conformational space of Au 12 has been explored by means of Born-Oppenheimer ab initio metadynamics, i.e., a molecular dynamics simulation coupled with a history dependent potential to accelerate events that might occur on a long time scale compared to the time step used in the simulations (rare events). The sampled conformations have complex, in general not intuitive topologies that we have classified as planar/quasiplanar or tridimensional, belonging to different regions of the free energy surface. Three conformational free energy basins were identified, one for the planar/quasiplanar and two for the tridimensional structures. At thermodynamic equilibrium, the planar/quasi-planar and tridimensional conformations were found to coexist, to be fluxional and to be separated by high-free-energy barriers. The comparison between the free energy and the potential energy revealed the relevance of the entropic contribution in the equilibrium distribution of the conformations of the cluster.

Abstract

The description of the conformational space generated by metal nanoparticles is a fundamental issue for the study of their physicochemical properties. In this investigation, an exhaustive exploration and a unified view of the conformational space of a gold nanocluster is provided using a Au 12 cluster as an example. Such system is characterized by coexisting planar/quasiplanar and tridimensional conformations separated by high-energy barriers. The conformational space of Au 12 has been explored by means of Born-Oppenheimer ab initio metadynamics, i.e., a molecular dynamics simulation coupled with a history dependent potential to accelerate events that might occur on a long time scale compared to the time step used in the simulations (rare events). The sampled conformations have complex, in general not intuitive topologies that we have classified as planar/quasiplanar or tridimensional, belonging to different regions of the free energy surface. Three conformational free energy basins were identified, one for the planar/quasiplanar and two for the tridimensional structures. At thermodynamic equilibrium, the planar/quasi-planar and tridimensional conformations were found to coexist, to be fluxional and to be separated by high-free-energy barriers. The comparison between the free energy and the potential energy revealed the relevance of the entropic contribution in the equilibrium distribution of the conformations of the cluster.

Statistics

Citations

17 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 23 Dec 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2010
Deposited On:23 Dec 2010 12:16
Last Modified:05 Apr 2016 14:15
Publisher:American Physical Society
ISSN:1098-0121
Publisher DOI:https://doi.org/10.1103/PhysRevB.81.174205

Download

Preview Icon on Download
Filetype: PDF (Journal Reprint) - Registered users only
Size: 462kB
View at publisher
Preview Icon on Download
Filetype: PDF (Supporting Information) - Registered users only
Size: 8MB