Header

UZH-Logo

Maintenance Infos

hp-Finite Elements for Elliptic Eigenvalue Problems: Error estimates which are explicit with respect to λ, h, and p


Sauter, S (2010). hp-Finite Elements for Elliptic Eigenvalue Problems: Error estimates which are explicit with respect to λ, h, and p. SIAM Journal on Numerical Analysis, 48(1):95-108.

Abstract

Convergence rates for finite element discretizations of elliptic eigenvalue problems in the literature usually are of the following form: If the mesh width h is fine enough, then the eigenvalues, resp., eigenfunctions, converge at some well-defined rate. In this paper, we will determine the maximal mesh width h(0)-more precisely the minimal dimension of a finite element space-so that the asymptotic convergence estimates hold for h <= h(0). This mesh width will depend on the size and spacing of the exact eigenvalues, the spatial dimension, and the local polynomial degree of the finite element space. For example, in the one-dimensional case, the condition lambda(3/4)h(0) less than or similar to 1 is sufficient for piecewise linear finite elements to compute an eigenvalue lambda with optimal convergence rates as h(0) >= h -> 0. It will turn out that the condition for eigenfunctions is slightly more restrictive. Furthermore, we will analyze the dependence of the ratio of the errors of the Galerkin approximation and of the best approximation of an eigenfunction on lambda and h. In this paper, the error estimates for the eigenvalue/-function are limited to the selfadjoint case. However, the regularity theory and approximation property cover also the nonselfadjoint case and, hence, pave the way towards the error analysis of nonselfadjoint eigenvalue/-function problems.

Abstract

Convergence rates for finite element discretizations of elliptic eigenvalue problems in the literature usually are of the following form: If the mesh width h is fine enough, then the eigenvalues, resp., eigenfunctions, converge at some well-defined rate. In this paper, we will determine the maximal mesh width h(0)-more precisely the minimal dimension of a finite element space-so that the asymptotic convergence estimates hold for h <= h(0). This mesh width will depend on the size and spacing of the exact eigenvalues, the spatial dimension, and the local polynomial degree of the finite element space. For example, in the one-dimensional case, the condition lambda(3/4)h(0) less than or similar to 1 is sufficient for piecewise linear finite elements to compute an eigenvalue lambda with optimal convergence rates as h(0) >= h -> 0. It will turn out that the condition for eigenfunctions is slightly more restrictive. Furthermore, we will analyze the dependence of the ratio of the errors of the Galerkin approximation and of the best approximation of an eigenfunction on lambda and h. In this paper, the error estimates for the eigenvalue/-function are limited to the selfadjoint case. However, the regularity theory and approximation property cover also the nonselfadjoint case and, hence, pave the way towards the error analysis of nonselfadjoint eigenvalue/-function problems.

Statistics

Citations

10 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

23 downloads since deposited on 15 Nov 2010
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:April 2010
Deposited On:15 Nov 2010 11:40
Last Modified:10 Dec 2017 06:16
Publisher:Society for Industrial and Applied Mathematics
ISSN:0036-1429
Additional Information:Copyright © 2010, Society for Industrial and Applied Mathematics
Publisher DOI:https://doi.org/10.1137/070702515

Download

Download PDF  'hp-Finite Elements for Elliptic Eigenvalue Problems: Error estimates which are explicit with respect to λ, h, and p'.
Preview
Filetype: PDF
Size: 1MB
View at publisher