Header

UZH-Logo

Maintenance Infos

Surfactant protein-D and exposure to bioaerosols in wastewater and garbage workers


Tabrizi, R D; Bernard, A; Thommen, A M; De Winter, F; Oppliger, A; Hilfiker, S; Tschopp, Alois; Hotz, Philipp (2010). Surfactant protein-D and exposure to bioaerosols in wastewater and garbage workers. International Archives of Occupational and Environmental Health, 83(8):879-886.

Abstract

PURPOSE: Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream.

METHODS: SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders.

RESULTS: Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared.

CONCLUSIONS: These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.

Abstract

PURPOSE: Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream.

METHODS: SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders.

RESULTS: Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared.

CONCLUSIONS: These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.

Statistics

Citations

3 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

195 downloads since deposited on 02 Dec 2010
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:02 Dec 2010 13:26
Last Modified:05 Apr 2016 14:16
Publisher:Springer
ISSN:0340-0131
Additional Information:The final publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s00420-010-0525-3
PubMed ID:20221625

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 315kB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 733kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations