Header

UZH-Logo

Maintenance Infos

Enhanced CellClassifier: a multi-class classification tool for microscopy images


Misselwitz, B; Strittmatter, G; Periaswamy, B; Schlumberger, M C; Rout, S; Horvath, P; Kozak, K; Hardt, W D (2010). Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinformatics, 11:30.

Abstract

BACKGROUND: Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. RESULTS: We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. CONCLUSION: Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening.

Abstract

BACKGROUND: Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. RESULTS: We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. CONCLUSION: Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening.

Statistics

Citations

40 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

45 downloads since deposited on 25 Oct 2010
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch > Research, Technology and Development Projects > InfectX
Special Collections > SystemsX.ch
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2010
Deposited On:25 Oct 2010 11:47
Last Modified:06 Aug 2017 03:23
Publisher:BioMed Central
ISSN:1471-2105
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2105-11-30
PubMed ID:20074370

Download

Preview Icon on Download
Preview
Filetype: PDF (Enhanced CellClassifier: a multi-class classification tool for microscopy images)
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)