Header

UZH-Logo

Maintenance Infos

Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species


Codron, D; Clauss, Marcus (2010). Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Canadian Journal of Zoology, 88(11):1129-1138.

Abstract

We propose a hypothesis for digestive constraints on the browsing and grazing options available to ruminants: that the diet-niche range (maximum and minimum grass intake) of a species is dependent upon its predisposition to stratified rumen contents, based on observations that this characteristic is a critical step towards enhanced fibre digestion and greater fluid throughput. We compare a physiological (heterogeneity of ingesta fluid content) and an anatomical (the intraruminal papillation pattern) measure with dietary evidence for a range of African and temperate species. Both measures are strongly related to the mean percentage of grass in species’ natural diets, as well as to the maximum and minimum levels of grass intake, respectively. The nature of these effects implies a stratification-level threshold, below which a species will not use a grass-based diet, but above which grass consumption can increase exponentially. However, above this threshold, a minimum percentage of grass in the diet is a prerequisite for optimal performance. We argue that this second constraint is crucial, as it depicts how a greater fluid throughput reduces potential for detoxification of plant secondary compounds, and therefore limits the maximum amount of browse a stratifying species will consume.

Abstract

We propose a hypothesis for digestive constraints on the browsing and grazing options available to ruminants: that the diet-niche range (maximum and minimum grass intake) of a species is dependent upon its predisposition to stratified rumen contents, based on observations that this characteristic is a critical step towards enhanced fibre digestion and greater fluid throughput. We compare a physiological (heterogeneity of ingesta fluid content) and an anatomical (the intraruminal papillation pattern) measure with dietary evidence for a range of African and temperate species. Both measures are strongly related to the mean percentage of grass in species’ natural diets, as well as to the maximum and minimum levels of grass intake, respectively. The nature of these effects implies a stratification-level threshold, below which a species will not use a grass-based diet, but above which grass consumption can increase exponentially. However, above this threshold, a minimum percentage of grass in the diet is a prerequisite for optimal performance. We argue that this second constraint is crucial, as it depicts how a greater fluid throughput reduces potential for detoxification of plant secondary compounds, and therefore limits the maximum amount of browse a stratifying species will consume.

Statistics

Citations

30 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

196 downloads since deposited on 22 Dec 2010
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2010
Deposited On:22 Dec 2010 08:47
Last Modified:09 Sep 2016 07:11
Publisher:National Research Council Canada
ISSN:0008-4301
Publisher DOI:https://doi.org/10.1139/Z10-077

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 319kB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations