Header

UZH-Logo

Maintenance Infos

Quantitative 1-step DNA methylation analysis with native genomic DNA as template


von Kanel, T; Gerber, D; Schaller, A; Baumer, A; Wey, E; Jackson, C B; Gisler, F M; Heinimann, K; Gallati, S (2010). Quantitative 1-step DNA methylation analysis with native genomic DNA as template. Clinical Chemistry, 56(7):1098-1106.

Abstract

Background: DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis.
Methods: The assay is based on combining methylation-sensitive FastDigest® endonuclease digestion and quantitative real-time PCR (qPCR) in a single reaction. The first step consists of DNA digestion, followed by endonuclease inactivation and qPCR. The degree of DNA methylation is evaluated by comparing the quantification cycles of a reaction containing a methylation-sensitive endonuclease with the reaction of a sham mixture containing no endonuclease. Control reactions interrogating an unmethylated locus allow the detection and correction of artifacts caused by endonuclease inhibitors, while simultaneously permitting copy number assessment of the locus of interest.
Results: With our novel approach, we correctly diagnosed the imprinting disorders Prader–Willi syndrome and Angelman syndrome in 35 individuals by measuring methylation levels and copy numbers for the SNRPN (small nuclear ribonucleoprotein polypeptide N) promoter. We also demonstrated that the proposed correction model significantly (P < 0.05) increases the assay’s accuracy with low-quality DNA, allowing analysis of DNA samples with decreased digestibility, as is often the case in retrospective studies.
Conclusions: Our novel DNA methylation assay reduces both the hands-on time and errors caused by handling and pipetting and allows methylation analyses to be completed within 90 min after DNA extraction. Combined with its precision and reliability, these features make the assay well suited for diagnostic procedures as well as high-throughput analyses.

Abstract

Background: DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis.
Methods: The assay is based on combining methylation-sensitive FastDigest® endonuclease digestion and quantitative real-time PCR (qPCR) in a single reaction. The first step consists of DNA digestion, followed by endonuclease inactivation and qPCR. The degree of DNA methylation is evaluated by comparing the quantification cycles of a reaction containing a methylation-sensitive endonuclease with the reaction of a sham mixture containing no endonuclease. Control reactions interrogating an unmethylated locus allow the detection and correction of artifacts caused by endonuclease inhibitors, while simultaneously permitting copy number assessment of the locus of interest.
Results: With our novel approach, we correctly diagnosed the imprinting disorders Prader–Willi syndrome and Angelman syndrome in 35 individuals by measuring methylation levels and copy numbers for the SNRPN (small nuclear ribonucleoprotein polypeptide N) promoter. We also demonstrated that the proposed correction model significantly (P < 0.05) increases the assay’s accuracy with low-quality DNA, allowing analysis of DNA samples with decreased digestibility, as is often the case in retrospective studies.
Conclusions: Our novel DNA methylation assay reduces both the hands-on time and errors caused by handling and pipetting and allows methylation analyses to be completed within 90 min after DNA extraction. Combined with its precision and reliability, these features make the assay well suited for diagnostic procedures as well as high-throughput analyses.

Statistics

Citations

13 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 04 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:04 Jan 2011 14:38
Last Modified:05 Apr 2016 14:26
Publisher:American Association for Clinical Chemistry
ISSN:0009-9147
Publisher DOI:https://doi.org/10.1373/clinchem.2009.142828
PubMed ID:20472822

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher