Header

UZH-Logo

Maintenance Infos

Mutation accumulation and fitness effects in hybridogenetic populations: a comparison to sexual and asexual systems


Som, Christian; Bagheri, Homayoun C; Reyer, Heinz-Ulrich (2007). Mutation accumulation and fitness effects in hybridogenetic populations: a comparison to sexual and asexual systems. BMC Evolutionary Biology, 7:80.

Abstract

Background: Female only unisexual vertebrates that reproduce by hybridogenesis show an unusual genetic composition. They are of hybrid origin but show no recombination between the genomes of their parental species. Instead, the paternal genome is discarded from the germline prior to meiosis, and gametes (eggs only) contain solely unrecombined maternal genomes. Hence hybridogens only transmit maternally inherited mutations. Hybridity is restored each generation by backcrossing with males of the sexual parental species whose genome was eliminated. In contrast, recombining sexual species propagate an intermixed pool of mutations derived from the maternal and paternal parts of the genome. If mutation rates are lower in female gametes than males, it raises the possibility for lower mutation accumulation in a hybridogenetic population, and consequently, higher population fitness than its sexual counterpart. Results: We show through Monte-Carlo simulations that at higher male to female mutation ratios, and sufficiently large population sizes, hybridogenetic populations can carry a lower mutation load than sexual species. This effect is more pronounced with synergistic forms of epistasis. Mutations accumulate faster on the sexual part of the genome, and with the purifying effects of epistasis, it makes it more difficult for mutations to be transmitted on the clonal part of the genome. In smaller populations, the same mechanism reduces the speed of Muller\'s Ratchet and the number of fixed mutations compared to similar asexual species. Conclusion: Since mutation accumulation can be less pronounced in hybridogenetic populations, the question arises why hybridogenetic organisms are so scarce compared to sexual species. In considering this, it is likely that comparison of population fitnesses is not sufficient. Despite competition with the sexual parental species, hybrid populations are dependent on the maintenance of – and contact with – their sexual counterpart. Other problems may involve too little genetic diversity to respond to changing environments and problems in becoming hybridogenetic (e.g. disruption of meiosis and subsequent infertility or sterility). Yet, lower mutation accumulation in hybridogenetic populations opens the possibility that hybridogenetic species can develop into new sexual species once recombination is re-established and reproductive isolation from sexual ancestors has occurred.

Abstract

Background: Female only unisexual vertebrates that reproduce by hybridogenesis show an unusual genetic composition. They are of hybrid origin but show no recombination between the genomes of their parental species. Instead, the paternal genome is discarded from the germline prior to meiosis, and gametes (eggs only) contain solely unrecombined maternal genomes. Hence hybridogens only transmit maternally inherited mutations. Hybridity is restored each generation by backcrossing with males of the sexual parental species whose genome was eliminated. In contrast, recombining sexual species propagate an intermixed pool of mutations derived from the maternal and paternal parts of the genome. If mutation rates are lower in female gametes than males, it raises the possibility for lower mutation accumulation in a hybridogenetic population, and consequently, higher population fitness than its sexual counterpart. Results: We show through Monte-Carlo simulations that at higher male to female mutation ratios, and sufficiently large population sizes, hybridogenetic populations can carry a lower mutation load than sexual species. This effect is more pronounced with synergistic forms of epistasis. Mutations accumulate faster on the sexual part of the genome, and with the purifying effects of epistasis, it makes it more difficult for mutations to be transmitted on the clonal part of the genome. In smaller populations, the same mechanism reduces the speed of Muller\'s Ratchet and the number of fixed mutations compared to similar asexual species. Conclusion: Since mutation accumulation can be less pronounced in hybridogenetic populations, the question arises why hybridogenetic organisms are so scarce compared to sexual species. In considering this, it is likely that comparison of population fitnesses is not sufficient. Despite competition with the sexual parental species, hybrid populations are dependent on the maintenance of – and contact with – their sexual counterpart. Other problems may involve too little genetic diversity to respond to changing environments and problems in becoming hybridogenetic (e.g. disruption of meiosis and subsequent infertility or sterility). Yet, lower mutation accumulation in hybridogenetic populations opens the possibility that hybridogenetic species can develop into new sexual species once recombination is re-established and reproductive isolation from sexual ancestors has occurred.

Statistics

Citations

5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

40 downloads since deposited on 11 Feb 2008
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:21 May 2007
Deposited On:11 Feb 2008 12:15
Last Modified:28 Aug 2017 11:23
Publisher:BioMed Central
ISSN:1471-2148
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2148-7-80
PubMed ID:17517124

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 372kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)