Header

UZH-Logo

Maintenance Infos

Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters


Song, W Y; Park, J; Mendoza-Cózatl, D G; Suter-Grotemeyer, M; Shim, D; Hörtensteiner, S; Geisler, M; Weder, B; Rea, P A; Rentsch, D; Schroeder, J I; Lee, Y; Martinoia, E (2010). Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107(49):21187-21192.

Abstract

Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.

Abstract

Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC(2) transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC(2) transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.

Statistics

Citations

187 citations in Web of Science®
200 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

126 downloads since deposited on 08 Jan 2011
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2010
Deposited On:08 Jan 2011 13:05
Last Modified:03 Aug 2017 15:21
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1013964107
PubMed ID:21078981

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB
View at publisher