Header

UZH-Logo

Maintenance Infos

No evidence for cerium dioxide nanoparticle translocation in maize plants


Birbaum, K; Brogioli, R; Schellenberg, M; Martinoia, E; Stark, W J; Günther, D; Limbach, L K (2010). No evidence for cerium dioxide nanoparticle translocation in maize plants. Environmental Science and Technology, 44(22):8718-8723.

Abstract

The rapidly increasing production of engineered nanoparticles has raised questions regarding their environmental impact and their mobility to overcome biological important barriers. Nanoparticles were found to cross different mammalian barriers, which is summarized under the term translocation. The present work investigates the uptake and translocation of cerium dioxide nanoparticles into maize plants as one of the major agricultural crops. Nanoparticles were exposed either as aerosol or as suspension. Our study demonstrates that 50 μg of cerium/g of leaves was either adsorbed or incorporated into maize leaves. This amount could not be removed by a washing step and did not depend on closed or open stomata investigated under dark and light exposure conditions. However, no translocation into newly grown leaves was found when cultivating the maize plants after airborne particle exposure. The use of inductively coupled mass spectrometer allowed detection limits of less than 1 ng of cerium/g of leaf. Exposure of plants to well-characterized nanoparticle suspensions in the irrigation water resulted also in no detectable translocation. These findings may indicate that the biological barriers of plants are more resistant against nanoparticle translocation than mammalian barriers.

Abstract

The rapidly increasing production of engineered nanoparticles has raised questions regarding their environmental impact and their mobility to overcome biological important barriers. Nanoparticles were found to cross different mammalian barriers, which is summarized under the term translocation. The present work investigates the uptake and translocation of cerium dioxide nanoparticles into maize plants as one of the major agricultural crops. Nanoparticles were exposed either as aerosol or as suspension. Our study demonstrates that 50 μg of cerium/g of leaves was either adsorbed or incorporated into maize leaves. This amount could not be removed by a washing step and did not depend on closed or open stomata investigated under dark and light exposure conditions. However, no translocation into newly grown leaves was found when cultivating the maize plants after airborne particle exposure. The use of inductively coupled mass spectrometer allowed detection limits of less than 1 ng of cerium/g of leaf. Exposure of plants to well-characterized nanoparticle suspensions in the irrigation water resulted also in no detectable translocation. These findings may indicate that the biological barriers of plants are more resistant against nanoparticle translocation than mammalian barriers.

Statistics

Citations

107 citations in Web of Science®
120 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

98 downloads since deposited on 25 Jan 2011
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2010
Deposited On:25 Jan 2011 15:48
Last Modified:05 Apr 2016 14:27
Publisher:American Chemical Society
ISSN:0013-936X
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher.
Publisher DOI:https://doi.org/10.1021/es101685f
PubMed ID:20964359

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 3MB
View at publisher