Header

UZH-Logo

Maintenance Infos

AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells


Meyer, S; Mumm, P; Imes, D; Endler, A; Weder, B; Al-Rasheid, K A S; Geiger, D; Marten, I; Martinoia, E; Hedrich, R (2010). AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal, 63(6):1054-1062.

Abstract

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO₂ -induced stomatal closure, as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and K(+) efflux via SLAC1 and GORK, respectively.

Abstract

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO₂ -induced stomatal closure, as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and K(+) efflux via SLAC1 and GORK, respectively.

Statistics

Citations

122 citations in Web of Science®
123 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

71 downloads since deposited on 27 Jan 2011
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2010
Deposited On:27 Jan 2011 13:06
Last Modified:05 Apr 2016 14:27
Publisher:Wiley-Blackwell
ISSN:0960-7412
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:https://doi.org/10.1111/j.1365-313X.2010.04302.x
PubMed ID:20626656

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 2MB
View at publisher