Header

UZH-Logo

Maintenance Infos

CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice


Abstract

Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85(Deltaex2)) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85(Deltaex2) animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85(Deltaex2) mice.

Abstract

Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85(Deltaex2)) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85(Deltaex2) animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85(Deltaex2) mice.

Statistics

Citations

23 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

732 downloads since deposited on 17 Jan 2011
73 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:17 Jan 2011 17:14
Last Modified:07 Dec 2017 05:04
Publisher:Nature Publishing Group
ISSN:0261-4189
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/emboj.2010.120
PubMed ID:20551902

Download

Download PDF  'CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice'.
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript: Main text)
Size: 1MB
View at publisher
Download PDF  'CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice'.
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript: supplementary material)
Size: 2MB