Header

UZH-Logo

Maintenance Infos

Observing the observer (I): Meta-bayesian models of learning and decision-making


Daunizeau, J; den Ouden, H E M; Pessiglione, M; Kiebel, S J; Stephan, K E; Friston, K J (2010). Observing the observer (I): Meta-bayesian models of learning and decision-making. PLoS ONE, 5(12):e15554.

Abstract

In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject’s perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper (‘Observing the observer (II): deciding when to decide’), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

Abstract

In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject’s perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper (‘Observing the observer (II): deciding when to decide’), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

Statistics

Citations

45 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

61 downloads since deposited on 11 Jan 2011
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > Neurochoice
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
330 Economics
Language:English
Date:14 December 2010
Deposited On:11 Jan 2011 18:16
Last Modified:03 Aug 2017 15:23
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0015554
PubMed ID:21179480

Download

Download PDF  'Observing the observer (I): Meta-bayesian models of learning and decision-making'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)