Header

UZH-Logo

Maintenance Infos

Genetic differentiation in diapause response along a latitudinal cline in European yellow dung fly populations


Demont, M; Blanckenhorn, Wolf U (2008). Genetic differentiation in diapause response along a latitudinal cline in European yellow dung fly populations. Ecological Entomology, 33(2):197-201.

Abstract

1. Seasonality is a prime selective factor expected to result in local adaptation of life cycles and dormancy. Genetic differentiation in diapause response was investigated along a European latitudinal cline in the dung fly Scathophaga stercoraria (Diptera: Scathophagidae). Such differentiation may be mediated by additive or dominance genetic and/or maternal effects, which need to be distinguished.
2. Replicate sibships from five European populations (Lugano, Switzerland: 46.00°N; Zurich, Switzerland: 47.37°N; Oxford, U.K.: 51.75°N; Lund, Sweden: 55.70°N; Reykjavik, Iceland: 64.15°N) were raised in a common laboratory environment known to induce pupal winter diapause (12 °C and 12 h light), revealing a genetic latitudinal cline in both the proportion of individuals entering diapause and diapause duration in response to winter length estimated from weather data.
3. Populations from the extremes of the cline (Lugano and Reykjavik) were further reciprocally crossed to investigate the underlying genetics. This experiment revealed evidence for diapause induction at 12 °C being dominant (i.e. not merely additive) and clearly rejected maternal effects as the primary source of this between-population variation.

Abstract

1. Seasonality is a prime selective factor expected to result in local adaptation of life cycles and dormancy. Genetic differentiation in diapause response was investigated along a European latitudinal cline in the dung fly Scathophaga stercoraria (Diptera: Scathophagidae). Such differentiation may be mediated by additive or dominance genetic and/or maternal effects, which need to be distinguished.
2. Replicate sibships from five European populations (Lugano, Switzerland: 46.00°N; Zurich, Switzerland: 47.37°N; Oxford, U.K.: 51.75°N; Lund, Sweden: 55.70°N; Reykjavik, Iceland: 64.15°N) were raised in a common laboratory environment known to induce pupal winter diapause (12 °C and 12 h light), revealing a genetic latitudinal cline in both the proportion of individuals entering diapause and diapause duration in response to winter length estimated from weather data.
3. Populations from the extremes of the cline (Lugano and Reykjavik) were further reciprocally crossed to investigate the underlying genetics. This experiment revealed evidence for diapause induction at 12 °C being dominant (i.e. not merely additive) and clearly rejected maternal effects as the primary source of this between-population variation.

Statistics

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 20 Oct 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Diapause, dominance, dormancy, dung flies, genetics, latitudinal variation, local adaptation, maternal effect, phenotypic plasticity
Language:English
Date:2008
Deposited On:20 Oct 2008 12:41
Last Modified:21 Nov 2017 13:32
Publisher:Wiley-Blackwell
ISSN:0307-6946
Publisher DOI:https://doi.org/10.1111/j.1365-2311.2007.00951.x

Download