Header

UZH-Logo

Maintenance Infos

Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins


Arguedas-Villa, C; Stephan, R; Tasara, T (2010). Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins. Food Microbiology, 27(5):653-660.

Abstract

The cold growth phenotypes and transcriptional activation of cold stress adaptation genes was evaluated amongst L. monocytogenes strains from human listeriosis cases, food products and associated production environments. Significant cold growth phenotypic variation was observed during growth of such strains in rich (BHI) as well as chemically defined minimal (MDM) nutrient conditions. While all twenty analyzed strains grew in BHI at 4°C, only eight of these strains, mostly those recovered from human listeriosis cases, were also able to grow in MDM under similar cold stress. The cold growth phenotypes observed in BHI were used to define two categories of five strains each, which either displayed enhanced and poor cold tolerance relative to the rest of the strain collection. The first group (GP1) consisted of strains characterized by short lag times, whilst the second group (GP2) comprised of strains displaying prolonged lag times before growth resumption during incubation in BHI cultures at 4°C. Transcription level activation of sigB, cspA and pgpH gene expression associated with cold stress exposure in a selection of GP1 and GP2 strains was assessed. Despite similar cold dependent sigB transcript induction between these two strain groups, there were significant observed in cold stress dependent induction of cspA and pgpH transcripts. Cold tolerant GP1 strains displayed relatively higher transcriptional activation of cspA and pgpH after cold stress exposure compared to the cold sensitive GP2 strains. This study highlights strain variability in cold stress tolerance phenotypes, as well as in strain capacity to activate specific cold adaptation gene expression responses. In addition the study also shows that enhanced and poor cold growth phenotypes are associated with particular strain capacity to activate important cold stress gene expression responses upon transition of L. monocytogenes into low temperature environments.

Abstract

The cold growth phenotypes and transcriptional activation of cold stress adaptation genes was evaluated amongst L. monocytogenes strains from human listeriosis cases, food products and associated production environments. Significant cold growth phenotypic variation was observed during growth of such strains in rich (BHI) as well as chemically defined minimal (MDM) nutrient conditions. While all twenty analyzed strains grew in BHI at 4°C, only eight of these strains, mostly those recovered from human listeriosis cases, were also able to grow in MDM under similar cold stress. The cold growth phenotypes observed in BHI were used to define two categories of five strains each, which either displayed enhanced and poor cold tolerance relative to the rest of the strain collection. The first group (GP1) consisted of strains characterized by short lag times, whilst the second group (GP2) comprised of strains displaying prolonged lag times before growth resumption during incubation in BHI cultures at 4°C. Transcription level activation of sigB, cspA and pgpH gene expression associated with cold stress exposure in a selection of GP1 and GP2 strains was assessed. Despite similar cold dependent sigB transcript induction between these two strain groups, there were significant observed in cold stress dependent induction of cspA and pgpH transcripts. Cold tolerant GP1 strains displayed relatively higher transcriptional activation of cspA and pgpH after cold stress exposure compared to the cold sensitive GP2 strains. This study highlights strain variability in cold stress tolerance phenotypes, as well as in strain capacity to activate specific cold adaptation gene expression responses. In addition the study also shows that enhanced and poor cold growth phenotypes are associated with particular strain capacity to activate important cold stress gene expression responses upon transition of L. monocytogenes into low temperature environments.

Statistics

Citations

20 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 20 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:August 2010
Deposited On:20 Jan 2011 08:17
Last Modified:05 Apr 2016 14:31
Publisher:Elsevier
ISSN:0740-0020
Publisher DOI:https://doi.org/10.1016/j.fm.2010.02.009

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations