Header

UZH-Logo

Maintenance Infos

Yellow pigmentation in Cronobacter sakazakii ES5: Genes involved and influence on persistence and growth under environmental stress


Johler, S; Stephan, R; Hartmann, I; Kuehner, K A; Lehner, A (2010). Yellow pigmentation in Cronobacter sakazakii ES5: Genes involved and influence on persistence and growth under environmental stress. Applied and Environmental Microbiology, 76(4):1053-1061.

Abstract

Cronobacter spp. are opportunistic food-borne pathogens that are responsible for rare but highly fatal cases of meningitis and necrotizing enterocolitis in neonates. While the operon responsible for yellow pigmentation in Cronobacter sakazakii strain ES5 was described recently, the involvement of additional genes in pigment expression and the influence of pigmentation on the fitness of Cronobacter spp. have not been investigated. Thus, the aim of this study was to identify further genes involved in pigment expression in Cronobacter sakazakii ES5 and to assess the influence of pigmentation on growth and persistence under conditions of environmental stress. A knockout library was created using random transposon mutagenesis. The screening of 9,500 mutants for decreased pigment production identified 30 colorless mutants. The mapping of transposon insertion sites revealed insertions in not only the carotenoid operon but also in various other genes involved in signal transduction, inorganic ions, and energy metabolism. To determine the effect of pigmentation on fitness, colorless mutants (DeltacrtE, DeltacrtX, and DeltacrtY) were compared to the yellow wild type using growth and inactivation experiments, a macrophage assay, and a phenotype array. Among other findings, the colorless mutants grew at significantly increased rates under osmotic stress compared to that of the yellow wild type while showing increased susceptibility to desiccation. Moreover, DeltacrtE and DeltacrtY exhibited increased sensitivity to UVB irradiation.

Abstract

Cronobacter spp. are opportunistic food-borne pathogens that are responsible for rare but highly fatal cases of meningitis and necrotizing enterocolitis in neonates. While the operon responsible for yellow pigmentation in Cronobacter sakazakii strain ES5 was described recently, the involvement of additional genes in pigment expression and the influence of pigmentation on the fitness of Cronobacter spp. have not been investigated. Thus, the aim of this study was to identify further genes involved in pigment expression in Cronobacter sakazakii ES5 and to assess the influence of pigmentation on growth and persistence under conditions of environmental stress. A knockout library was created using random transposon mutagenesis. The screening of 9,500 mutants for decreased pigment production identified 30 colorless mutants. The mapping of transposon insertion sites revealed insertions in not only the carotenoid operon but also in various other genes involved in signal transduction, inorganic ions, and energy metabolism. To determine the effect of pigmentation on fitness, colorless mutants (DeltacrtE, DeltacrtX, and DeltacrtY) were compared to the yellow wild type using growth and inactivation experiments, a macrophage assay, and a phenotype array. Among other findings, the colorless mutants grew at significantly increased rates under osmotic stress compared to that of the yellow wild type while showing increased susceptibility to desiccation. Moreover, DeltacrtE and DeltacrtY exhibited increased sensitivity to UVB irradiation.

Statistics

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 14 Jan 2011
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:14 Jan 2011 17:24
Last Modified:05 Apr 2016 14:31
Publisher:American Society for Microbiology
ISSN:0099-2240
Publisher DOI:https://doi.org/10.1128/AEM.01420-09.
PubMed ID:20038705

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher