Header

UZH-Logo

Maintenance Infos

In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice


Rasmussen, P; Vedel, J C; Olesen, J; Adser, H; Pedersen, M V; Hart, E; Secher, N H; Pilegaard, H (2011). In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice. Acta Physiologica, 201(4):475-482.

Abstract

Aim:  Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans. Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods:  Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined. The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results:  At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h into the recovery (P < 0.05 vs. rest). IL-6 mRNA was expressed in the three parts of the brain with the lowest content in the hippocampus (P < 0.05) coupled to the highest glycogen content (3.2 ± 0.8 mmol kg(-1) ). Treadmill running increased the hippocampal IL-6 mRNA content 2-3-fold (P < 0.05), while the hippocampal glycogen content decreased to 2.6 ± 0.6 mmol kg(-1) (P < 0.05) with no significant changes in the two other parts of the brain. Conclusion:  Human brain releases IL-6 both during and in recovery from prolonged exercise and mouse data suggest that concurrent changes in IL-6 mRNA and glycogen levels make the hippocampus a likely source of the IL-6 release from the brain.

Abstract

Aim:  Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans. Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods:  Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined. The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results:  At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h into the recovery (P < 0.05 vs. rest). IL-6 mRNA was expressed in the three parts of the brain with the lowest content in the hippocampus (P < 0.05) coupled to the highest glycogen content (3.2 ± 0.8 mmol kg(-1) ). Treadmill running increased the hippocampal IL-6 mRNA content 2-3-fold (P < 0.05), while the hippocampal glycogen content decreased to 2.6 ± 0.6 mmol kg(-1) (P < 0.05) with no significant changes in the two other parts of the brain. Conclusion:  Human brain releases IL-6 both during and in recovery from prolonged exercise and mouse data suggest that concurrent changes in IL-6 mRNA and glycogen levels make the hippocampus a likely source of the IL-6 release from the brain.

Statistics

Citations

11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 02 Feb 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:02 Feb 2011 18:11
Last Modified:05 Apr 2016 14:32
Publisher:Wiley-Blackwell
ISSN:1748-1708
Publisher DOI:https://doi.org/10.1111/j.1748-1716.2010.02223.x
PubMed ID:21083649

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations