Cosmological simulations of the Milky Way

Mayer, L

Abstract: Recent simulations of forming low-mass galaxies suggests a strategy for obtaining realistic models of galaxies like the Milky-Way.

DOI: https://doi.org/10.1017/S1743921310008707

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-41700

Originally published at:
DOI: https://doi.org/10.1017/S1743921310008707
Cosmological simulations of the Milky Way

Lucio Mayer
Institute for Theoretical Physics, University of Zurich, Wintherthurestrasse 190, Zurich (CH)

Abstract. Recent simulations of forming low-mass galaxies suggests a strategy for obtaining realistic models of galaxies like the Milky-Way.

Cosmological simulations of galaxy formation are powerful tools for confronting the ΛCDM model with observational datasets. The increase in mass and spatial resolution and the improvement of sub-grid algorithms for star formation and feedback processes have recently resulted in simulated galaxies with realistic disk size and angular momentum content (Mayer et al. 2008; Governato et al. 2009a). However, simulated galaxies hosted in halos with masses $\sim 10^{12} M_\odot$ exhibit prominent bulges and structural parameters reminiscent of Sa spirals rather than of Sb/Sc galaxies. Surface densities at the solar radius are larger than that of the Milky Way (MW) by factors of a few and the more massive bulge produces a steeper rotation curve compared to that of the MW (Read et al. 2009). At halo masses $M_{\text{vir}} > 2 \times 10^{12} M_\odot$ the predominance of hot-mode gas accretion counters the presence of a prominent star forming disk at $z = 0$, producing earlier-type objects resembling S0 galaxies (Brooks et al. 2009) and supporting recent estimates based on RAVE that yield $M_{\text{vir}} \sim 10^{12} M_\odot$ (Smith et al. 2007).

Yet the solution to forming a realistic MW analog could be at hand. Recently we have performed galaxy-formation simulations for mass scales $< 10^{11} M_\odot$. By sampling these low-mass galaxies with several millions of particles, we achieve a mass resolution better than $10^3 M_\odot$ in the baryons, thus resolving individual molecular clouds. Star formation can now be tied to gas at molecular cloud densities ($\rho > 100 \text{ cm}^{-3}$). A realistic, inhomogeneous interstellar medium is obtained that results naturally in stronger supernova outflows than when the standard star formation threshold ($\rho = 0.1 \text{ cm}^{-3}$) is adopted. Such outflows efficiently remove the low-angular momentum baryonic material from the central region, suppressing the formation of a bulge and producing an object with a slowly rising rotation curve in very close agreement with observed dwarf galaxies (Governato et al. 2009b; see also Ceverino & Klypin 2009). We argue that comparable resolution of MW-sized galaxies will yield rotation curves and bulge-to-disk ratios appropriate for Sb-Sc spirals at $z = 0$. This requires increasing the number of particles employed by more than an order of magnitude.

References