Header

UZH-Logo

Maintenance Infos

The portal theory supported by venous drainage-selective fat transplantation


Rytka, Julia M; Wueest, Stephan; Schoenle, Eugen J; Konrad, Daniel (2011). The portal theory supported by venous drainage-selective fat transplantation. Diabetes, 60(1):56-63.

Abstract

OBJECTIVE The "portal hypothesis" proposes that the liver is directly exposed to free fatty acids and cytokines increasingly released from visceral fat tissue into the portal vein of obese subjects, thus rendering visceral fat accumulation particularly hazardous for the development of hepatic insulin resistance and type 2 diabetes. In the present study, we used a fat transplantation paradigm to (artificially) increase intra-abdominal fat mass to test the hypothesis that venous drainage of fat tissue determines its impact on glucose homeostasis. RESEARCH DESIGN AND METHODS Epididymal fat pads of C57Bl6/J donor mice were transplanted into littermates, either to the parietal peritoneum (caval/systemic venous drainage) or, by using a novel approach, to the mesenterium, which confers portal venous drainage. RESULTS Only mice receiving the portal drained fat transplant developed impaired glucose tolerance and hepatic insulin resistance. mRNA expression of proinflammatory cytokines was increased in both portally and systemically transplanted fat pads. However, portal vein (but not systemic) plasma levels of interleukin (IL)-6 were elevated only in mice receiving a portal fat transplant. Intriguingly, mice receiving portal drained transplants from IL-6 knockout mice showed normal glucose tolerance. CONCLUSIONS These results demonstrate that the metabolic fate of intra-abdominal fat tissue transplantation is determined by the delivery of inflammatory cytokines to the liver specifically via the portal system, providing direct evidence in support of the portal hypothesis.

Abstract

OBJECTIVE The "portal hypothesis" proposes that the liver is directly exposed to free fatty acids and cytokines increasingly released from visceral fat tissue into the portal vein of obese subjects, thus rendering visceral fat accumulation particularly hazardous for the development of hepatic insulin resistance and type 2 diabetes. In the present study, we used a fat transplantation paradigm to (artificially) increase intra-abdominal fat mass to test the hypothesis that venous drainage of fat tissue determines its impact on glucose homeostasis. RESEARCH DESIGN AND METHODS Epididymal fat pads of C57Bl6/J donor mice were transplanted into littermates, either to the parietal peritoneum (caval/systemic venous drainage) or, by using a novel approach, to the mesenterium, which confers portal venous drainage. RESULTS Only mice receiving the portal drained fat transplant developed impaired glucose tolerance and hepatic insulin resistance. mRNA expression of proinflammatory cytokines was increased in both portally and systemically transplanted fat pads. However, portal vein (but not systemic) plasma levels of interleukin (IL)-6 were elevated only in mice receiving a portal fat transplant. Intriguingly, mice receiving portal drained transplants from IL-6 knockout mice showed normal glucose tolerance. CONCLUSIONS These results demonstrate that the metabolic fate of intra-abdominal fat tissue transplantation is determined by the delivery of inflammatory cytokines to the liver specifically via the portal system, providing direct evidence in support of the portal hypothesis.

Statistics

Citations

51 citations in Web of Science®
53 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

89 downloads since deposited on 09 Feb 2011
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:January 2011
Deposited On:09 Feb 2011 16:42
Last Modified:05 Apr 2016 14:34
Publisher:American Diabetes Association
ISSN:0012-1797
Additional Information:This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes (http://diabetes.diabetesjournals.org). The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version is available online at DOI: 10.2337/db10-0697.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.2337/db10-0697
PubMed ID:20956499

Download

Preview Icon on Download
Filetype: PDF (Verlags-PDF) - Registered users only
Size: 359kB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 495kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations