Header

UZH-Logo

Maintenance Infos

In vivo angiogenic activity of enamel matrix derivative


Kauvar, A S (2010). In vivo angiogenic activity of enamel matrix derivative. Journal of Periodontology, 81(8):1196-1201.

Abstract

BACKGROUND: Porcine enamel matrix derivative (EMD) has a clinical use in facilitating periodontal healing by enhancing the regeneration of alveolar bone, cementum, and periodontal ligament. The mechanism of clinical use has not been elucidated, but in vitro studies suggest that EMD may enhance healing, in part, by stimulating angiogenesis. This study analyzes the effect of EMD on the production of blood vessels in the chorioallantoic membrane (CAM) of the developing chicken egg.

METHODS: Various amounts of EMD ranging from 15 to 125 ng/5 microl were pipetted onto a 3-mm diameter x 2-mm thick bioabsorbable hemostatic gelatin and placed onto the surface of the CAM. Recombinant human amelogenin and a purified 5-kDa protein fraction derived from EMD were also tested at various amounts ranging from 15 to 62 ng/5 microl. A mixture of fibroblast growth factor and vascular endothelial growth factor served as the positive control. The negative control was 0.9% saline. A histologic examination of the interface of the gelatin and CAM was performed, evaluating for new blood-vessel formation on an ordinal scale of 0 to 3. Non-parametric statistical analyses were applied to compare test groups with the negative controls.

RESULTS: CAM treated with EMD displayed moderate vascularity as indicated by a maximal score of 3.0 +/- 0.05 (mean +/- SEM). This compared favorably to the degree of vascularity stimulated by the mixture of fibroblast growth factor and vascular endothelial growth factor, which had a score of 3.0 +/- 0.05. Interestingly, the stimulation of angiogenesis by EMD was significant only at the lowest amounts tested. At the higher amounts, vascularity was reduced and not significantly different from the negative control. Vascularity was also increased by recombinant human amelogenin as indicated by a maximal score of 2.9 +/- 0.14. By contrast, there was only mild vascularity in sections treated with the negative control as indicated by a score of 1.7 +/- 0.4. The vascularity of the 5-kDa EMD-protein fraction was not different from the negative-control group (2.5 +/- 0.5 versus 1.7 +/- 0.4, respectively).

CONCLUSIONS: EMD stimulates angiogenesis in the CAM model. As a heterogeneous mixture of extracellular matrix components, EMD may have multiple biologic functions, but it is likely that at least part of the explanation for its observed positive clinical effects may be the stimulation of angiogenesis. The fact that vascularity was also increased by recombinant human amelogenin raises the possibility that this 28.9-kDa protein may be the source of the angiogenic activity because it is the predominant protein of the EMD mixture. These results, taken together with results from previously reported in vitro studies, suggest that EMD may increase angiogenesis directly and/or indirectly at the wound-healing site.

Abstract

BACKGROUND: Porcine enamel matrix derivative (EMD) has a clinical use in facilitating periodontal healing by enhancing the regeneration of alveolar bone, cementum, and periodontal ligament. The mechanism of clinical use has not been elucidated, but in vitro studies suggest that EMD may enhance healing, in part, by stimulating angiogenesis. This study analyzes the effect of EMD on the production of blood vessels in the chorioallantoic membrane (CAM) of the developing chicken egg.

METHODS: Various amounts of EMD ranging from 15 to 125 ng/5 microl were pipetted onto a 3-mm diameter x 2-mm thick bioabsorbable hemostatic gelatin and placed onto the surface of the CAM. Recombinant human amelogenin and a purified 5-kDa protein fraction derived from EMD were also tested at various amounts ranging from 15 to 62 ng/5 microl. A mixture of fibroblast growth factor and vascular endothelial growth factor served as the positive control. The negative control was 0.9% saline. A histologic examination of the interface of the gelatin and CAM was performed, evaluating for new blood-vessel formation on an ordinal scale of 0 to 3. Non-parametric statistical analyses were applied to compare test groups with the negative controls.

RESULTS: CAM treated with EMD displayed moderate vascularity as indicated by a maximal score of 3.0 +/- 0.05 (mean +/- SEM). This compared favorably to the degree of vascularity stimulated by the mixture of fibroblast growth factor and vascular endothelial growth factor, which had a score of 3.0 +/- 0.05. Interestingly, the stimulation of angiogenesis by EMD was significant only at the lowest amounts tested. At the higher amounts, vascularity was reduced and not significantly different from the negative control. Vascularity was also increased by recombinant human amelogenin as indicated by a maximal score of 2.9 +/- 0.14. By contrast, there was only mild vascularity in sections treated with the negative control as indicated by a score of 1.7 +/- 0.4. The vascularity of the 5-kDa EMD-protein fraction was not different from the negative-control group (2.5 +/- 0.5 versus 1.7 +/- 0.4, respectively).

CONCLUSIONS: EMD stimulates angiogenesis in the CAM model. As a heterogeneous mixture of extracellular matrix components, EMD may have multiple biologic functions, but it is likely that at least part of the explanation for its observed positive clinical effects may be the stimulation of angiogenesis. The fact that vascularity was also increased by recombinant human amelogenin raises the possibility that this 28.9-kDa protein may be the source of the angiogenic activity because it is the predominant protein of the EMD mixture. These results, taken together with results from previously reported in vitro studies, suggest that EMD may increase angiogenesis directly and/or indirectly at the wound-healing site.

Statistics

Citations

20 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

9 downloads since deposited on 22 Mar 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Fixed and Removable Prosthodontics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:22 Mar 2011 16:44
Last Modified:05 Apr 2016 14:35
Publisher:American Academy of Periodontology
ISSN:0022-3492
Publisher DOI:https://doi.org/10.1902/jop.2010.090441
PubMed ID:20370422

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 490kB
View at publisher
Preview Icon on Download
Filetype: PDF - Registered users only
Size: 51kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations