Header

UZH-Logo

Maintenance Infos

High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the Northern Indian Margin


Brühwiler, T; Bucher, H; Brayard, A; Goudemand, N (2010). High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 297:491-501.

Abstract

Based on new collections of abundant and well preserved material from the Salt Range (Pakistan), Spiti (Northern India) and Tulong (South Tibet), several recent studies focused on the taxonomic revision and detailed biostratigraphy of Smithian ammonoids. In this work, biochronological data for these three well-documented basins are analyzed by means of the Unitary Associations method, resulting in a biochronological scheme of unprecedented high-resolution for the Smithian of the Northern Indian Margin (NIM). Data for each basin are first processed separately, thus yielding three local biochronological zonations. Then, the three sequences are processed together as a regional three-section data set for the construction of an inter-basin sequence at the NIM level. The latter zonation comprises 16 Unitary Associations grouped into 13 zones for the entire Smithian. Analysis of ammonoid diversity dynamics based on this new highly resolved time frame highlights (i) a marked diversification during the early Smithian, (ii) a severe extinction during the late Smithian, and (iii) an overall very high turnover throughout the Smithian. At a global spatial scale and stage resolution, the diversity of Smithian ammonoid genera appears surprisingly high, as highlighted by a previous study. It is shown that at a smaller geographic scale and with the most highly resolved time frame, Smithian ammonoids of the NIM reached their explosive diversity peak essentially through extremely high turnover rates rather than through a classic diversification process of high origination rates coupled with low extinction rates. Based on recently published U/Pb ages, regional apparent total rates of origination and extinction of more than 100 species per My can be inferred for the Smithian ammonoids of the NIM.

Abstract

Based on new collections of abundant and well preserved material from the Salt Range (Pakistan), Spiti (Northern India) and Tulong (South Tibet), several recent studies focused on the taxonomic revision and detailed biostratigraphy of Smithian ammonoids. In this work, biochronological data for these three well-documented basins are analyzed by means of the Unitary Associations method, resulting in a biochronological scheme of unprecedented high-resolution for the Smithian of the Northern Indian Margin (NIM). Data for each basin are first processed separately, thus yielding three local biochronological zonations. Then, the three sequences are processed together as a regional three-section data set for the construction of an inter-basin sequence at the NIM level. The latter zonation comprises 16 Unitary Associations grouped into 13 zones for the entire Smithian. Analysis of ammonoid diversity dynamics based on this new highly resolved time frame highlights (i) a marked diversification during the early Smithian, (ii) a severe extinction during the late Smithian, and (iii) an overall very high turnover throughout the Smithian. At a global spatial scale and stage resolution, the diversity of Smithian ammonoid genera appears surprisingly high, as highlighted by a previous study. It is shown that at a smaller geographic scale and with the most highly resolved time frame, Smithian ammonoids of the NIM reached their explosive diversity peak essentially through extremely high turnover rates rather than through a classic diversification process of high origination rates coupled with low extinction rates. Based on recently published U/Pb ages, regional apparent total rates of origination and extinction of more than 100 species per My can be inferred for the Smithian ammonoids of the NIM.

Statistics

Citations

32 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 21 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Language:English
Date:2010
Deposited On:21 Jan 2011 09:57
Last Modified:07 Dec 2017 06:09
Publisher:Elsevier
ISSN:0031-0182
Publisher DOI:https://doi.org/10.1016/j.palaeo.2010.09.001

Download